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a b s t r a c t

Inspired by the recent promising developments of Bayesian learning techniques in the context of system
identification, this paper proposes a Transfer Function estimator, based on Gaussian process regression.
Contrary to existing kernel-based impulse response estimators, a frequency domain approach is adopted.
This leads to a formulation and implementation which is seamlessly valid for both continuous- and
discrete-time systems, and which conveniently enables the selection of the frequency band of interest. A
pragmatic approach is proposed in an output error framework, from sampled input and output data. The
transient is dealt with by estimating it simultaneously with the transfer function.

Modelling the transfer function and the transient as Gaussian processes allows for the incorporation
of relevant prior knowledge on the system, in the form of suitably designed kernels. The SS (Stable Spline)
and DC (Diagonal Correlated) kernels from the literature are translated to the frequency domain, and are
proven to impose the stability of the estimated transfer function. Specifically, the estimates are shown to
be stable rational functions in the frequency variable. The hyperparameters of the kernel are tuned via
marginal likelihood maximisation.

The comparison between the proposed method and three existing methods from the literature – the
regularised finite impulse response (RFIR) estimator, the Local Polynomial Method (LPM), and the Local
Rational Method for Frequency Response Function estimation – is illustrated on simulations on multiple
case studies.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

When considering the identification of Linear Time Invariant
(LTI) systems, an important initial step is the non-parametric
estimation of their Transfer Functions (TF) (Ljung, 1985), (Pintelon
& Schoukens, 2012, Chapters 2–7). It provides the user with insight
into the dynamic behaviour of the system, even before any attempt
is made to determine a parametric model.

The estimation of a transfer function ought to consider that
the available signals are confined to a finite time interval. This
is typically handled by including initial conditions (time domain)
or an additional transient (frequency domain) in the estimation

✩ The material in this paper was not presented at any conference. Corresponding
author: Tianshi Chen. Tel.: +86 0755 84273835. A part of Tianshi Chen’s work was
done when he was with the Division of Automatic Control, Linköping University,
Linköping, Sweden. This paper was recommended for publication in revised form
by Associate Editor Brett Ninness under the direction of Editor Torsten Söderström.

E-mail addresses: jlataire@vub.ac.be (J. Lataire), tschen@cuhk.edu.cn (T. Chen).

process. The transient takes into account the fact that the input and
output signals are not necessarily periodic, or that their periodicity
does not match the length of the measurement window, as
explained later on.

The Frequency Response Function (FRF) of a system is defined
in Pintelon and Schoukens (2012, Chapter 2) as the evaluation of
its TF – a continuous function – at a discrete set of frequencies.
FRF estimation has been studied extensively in the past, starting
with tools for spectral analysis (Antoni & Schoukens, 2007; Ben-
dat & Piersol, 1993; Schoukens, Rolain, & Pintelon, 2006). These
tools aim at suppressing the transient by applying carefully de-
signedwindows. Alternatively, Stenman, Gustafsson, Rivera, Ljung,
and McKelvey (2000) applies a frequency dependent smoothing
procedure to the Empirical Transfer Function Estimate (ETFE) to
suppress the transient. More recent work makes use of an intrin-
sic property of the transient to estimate it simultaneously with the
FRF, yielding much better results. Namely, both the FRF and the
transient are known to be smooth functions of the frequency (Pin-
telon & Schoukens, 2012, Appendix 6.B). Therefore, their estima-
tion can be performed via smoothers. By following this point of
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view, Refs. Pintelon, Schoukens, Vandersteen, and Barbé (2010a,b)
and Schoukens, Vandersteen, Barbé, and Pintelon (2009) use a lo-
cal polynomial smoother, and will be referred to as the Local Poly-
nomial Method (LPM), while (McKelvey & Guérin, 2012) discusses
the Local Rational Method (LRM), which uses a local rational func-
tion as a smoother. It is worth to note that both the LPM and the
LRM provide a set of local models centred around the bins of the
DFT (Discrete Fourier Transform), for which the interpolation in-
between theDFT bins remains an open question. Consequently, the
stability of the LPM and LRM estimates is also undefined.

Recently, new results for LTI system identification have been
reported (Pillonetto & De Nicolao, 2010; Pillonetto, Chiuso, & De
Nicolao, 2011; Chen, Ohlsson, & Ljung, 2012) on the estimation
of impulse responses, which is the time domain equivalent of the
TF. The impulse response estimation is formulated as a Gaussian
process regression problem, which can also be interpreted as a
regularisation method. More specifically, the impulse response is
modelled as a real and zero mean Gaussian process with suitably
chosen and tuned covariance (often called kernel) functions. The
impulse response estimate is then given by the conditional mean
of theGaussian process conditioned on the given data. Thismethod
will be denoted by RFIR (Regularised least squares for estimating
the Finite Impulse Response). It has two unique features. The
first one is that the kernel function is designed to embed the
prior knowledge, e.g., stability and smoothness of the impulse
response, into the estimation problem. The second one is that the
model complexity is tuned in a continuous way and handled by
maximising the marginal likelihood of the hyper-parameters used
to parameterise the kernel function. This approach is known to
enable an automatic trade-off between themodel fit and themodel
complexity (MacKay, 1998; Rasmussen & Williams, 2006), and as
pointed out in Pillonetto, Dinuzzo, Chen, and De Nicolao (2014),
is more reliable than existing complexity measures, such as the
Akaike’s criterium (AIC) or cross validation, especially for small
data sets.

In this paper, Gaussian process regression is applied directly
to the TF and the transient estimation. That is, the estimation is
formulated in the frequency domain. The resulting estimate will
be denoted by GPTF. A particular attention is deserved to the fact
that the TF and the transient are complex valued functions, but
that at some frequencies – at 0 Hz and at the Nyquist frequency for
discrete time systems – they should be real valued. For that reason,
themethodwill be developed in the context ofmixed real/complex
Gaussian processes. Next, properties of the associated frequency
domain kernels, applicable to LTI systems, will be derived and a
sufficient condition on the kernel will be formulated to impose the
stability of the GPTF estimate. Then, it will be shown how the time
domain kernels – Stable Spline andDiagonal Correlated – proposed
in Pillonetto and De Nicolao (2010), Pillonetto et al. (2011) and
Chen et al. (2012) are transformed to the frequency domain and
satisfy the condition of stability.

It will be shown that the RFIR estimate in Pillonetto and De
Nicolao (2010), Pillonetto et al. (2011), Chen et al. (2012), Pillonetto
et al. (2014) and the GPTF in the frequency domain are dual to
each other, under specific conditions. However, from a practical
point of view, the frequency-domain formulation is shown to give a
more appealing implementation than the RFIR whenworking with
continuous-time systems. This is because the explicit computation
of the convolution between the input and the impulse response
is circumvented. A second advantage of the GPTF over the RFIR is
that it allows the estimation to be performed in a limited frequency
band. The main advantages of the GPTF over the LPM and the LRM
are that the estimated transfer function is guaranteed to be stable,
and that it is expressed as a continuous function of the frequency.

The remaining part of this paper is organised as follows.
Gaussian processes for regression of mixed real and complex

valued functions are developed in Section 2. The formulation of
the TF estimation problem is given in Section 3, and is rewritten
as a Bayesian regression problem in Section 4. The choice and
construction of kernels in the frequency domain is discussed
in Section 5, and the duality with regularised impulse response
estimation is given in Section 6. The Gaussian process TF estimator
is compared with the LPM, the LRM and the RFIR in Section 7 on
case studies. Section 8 concludes this paper. The appendix provides
the proofs of the lemma and the theorems.

2. Real/complex Gaussian distributions

Transfer Functions (TFs) will be modelled as Gaussian pro-
cesses. Since a TF takes both real (at 0 Hz and at the Nyquist fre-
quency for discrete time systems) and complex values, it cannot
be modelled as either a real or a complex random variable. In par-
ticular, treating a real Gaussian random variable as a complex one
leads to a singular covariance matrix, see Remark 1. This prompts
us to introduce the so-called real/complex Gaussian (RCG) distri-
bution to model the TF.

Definition 1 (RCG Distribution). A random vector

Z =

ZT
r ZT

c

T
, Zr ∈ Rnr , Zc ∈ Cnc (1)

is said to be real/complexGaussiandistributed, if

ZT
r ℜZT

c ℑZT
c

T
is Gaussian distributed, where ℜ, ℑ denote the real and imaginary
parts respectively, and the superscript T denotes the transpose of
a vector.

We introduce below its probability density function and derive its
characteristic parameters. Define
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The probability density function of Zre is described by
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where mre = E {Zre} and Γre = E

(Zre − mre)(Zre − mre)

T

, and

the superscript H denotes the Hermitian transpose of a vector.
Define
mT
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then it is easy to verify that

mre =
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T
, (5)

Γre =

 Γr ℜΓrc −ℑΓrc

ℜΓ H
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 . (6)

Now, define z̃ =

zTr zTc zHc

T . It holds that
zre = Mz̃, with M =

Inr 0 0
0 Inc/2 Inc/2
0 −jInc/2 jInc/2

 . (7)
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