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a b s t r a c t

This paper studies the adaptive and optimal output-feedback problem for continuous-time uncertain
systems with nonlinear dynamic uncertainties. Data-driven output-feedback control policies are
developed by approximate/adaptive dynamic programming (ADP) based on both policy iteration and
value iteration methods. The obtained adaptive and optimal output-feedback controllers differ from
the existing literature on the ADP in that they are derived from sampled-data systems theory and are
guaranteed to be robust to dynamic uncertainties. A small-gain condition is given underwhich the overall
system is globally asymptotically stable at the origin. An application to power systems is given to test the
effectiveness of the proposed approaches.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As an important subfield ofmodern control theory, optimal con-
trol aims to develop controllers that optimize certain performance
(see Lewis, Vrabie, & Syrmosc, 2012). Traditional optimal control
methods need to solve the Hamilton–Jacobi–Bellman (HJB) equa-
tion (or algebraic Riccati equation (ARE) for linear systems) via the
perfect knowledge of the system dynamics. Unfortunately, it is of-
ten difficult to obtain an accurate mathematical model for real-
world, modern engineering, and natural systems.

Approximate/adaptive dynamic programming (ADP) (see, e.g.,
Lewis & Liu, 2013;Ni, He, &Wen, 2013; Si, Barto, Powell, &Wunsch,
2004; Vamvoudakis, 2014; Werbos, 1974, 1990; Zhang, Liu, Luo,
& Wang, 2013) is a non-model-based approach which gives rise
to online approximation of optimal solutions via some recursive
numerical methods. The related research has been studied for
discrete-time Markov decision processes (Bertsekas & Tsitsiklis,
1996; Powell, 2007; Sutton & Barto, 1998) and discrete-time
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feedback control systems (Lewis & Vrabie, 2009; Lewis, Vrabie, &
Vamvoudakis, 2012; Liu & Wei, 2014; Wang, Zhang, & Liu, 2009).
For continuous-time systems, related work can be found in Bhasin,
Sharma, Parte, and Dixon (2011), Jiang and Jiang (2012a, 2014),
Luo, Wu, Huang, and Liu (2014), Vrabie, Pastravanu, Abu-Khalaf,
and Lewis (2009), andYang, Liu,Ma, andXu (2016). ADP andoutput
regulation theory is firstly integrated by Gao and Jiang (2016)
to solve the problem of asymptotic tracking with disturbance
rejection.

Recently, extending these solutions to output-feedback prob-
lems has received attention from Lewis and Vamvoudakis (2011),
Gao, Huang, Jiang, and Chai (2016); Gao, Jiang, Jiang, and Chai
(2014) and Zhu, Modares, Peen, Lewis, and Yue (2015) for linear
systems andHe and Jagannathan (2005) and Liu, Huang,Wang, and
Wei (2013) for nonlinear systems based on neural networks (Ge,
Lee, & Harris, 1998). A common feature of these papers is that no
dynamic uncertainty (Jiang & Mareels, 1997) is addressed. How-
ever, there are numerous practical examples of continuous-time
systems arising from engineering and biology for which dynamic
uncertainty is unavoidable.

The contribution of this paper is threefold. First, different from
existing output-feedback ADP for discrete-time linear systems
(Lewis & Vamvoudakis, 2011) or continuous-time static output-
feedback ADP design which requires the accurate knowledge of
the inputmatrix (Zhu et al., 2015), a dynamic output-feedback ADP
approach is proposed for continuous-time linear systems without
the exact knowledge of any system matrices. By employing
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the sampled-data system theory (Chen & Francis, 1995), the
unmeasurable state can be reconstructed in terms of input/output
data, whereby we can iteratively solve the ARE. Second, we, for
the first time, develop an output-feedback value iteration (VI)
ADP algorithm for continuous-time linear systems by using the
sampled-data approach.

As the third contribution, we study the robust optimal re-
design issue for a class of interconnected systems with dynamic
uncertainties. The state and order of dynamic uncertainties are
unknown. Because of the implementation of sampled-data output-
feedback robust optimal controllers, the closed-loop system is a
hybrid system that involves both continuous-time and discrete-
time dynamics. Thus, robustness analysis cannot be conducted di-
rectly by our previous work on state-feedback robust ADP (Jiang
& Jiang, 2013, 2014). Instead, we derive the global asymptotic
stability of the closed-loop interconnected system based on a
combined application of Lyapunov theory, sampled-data systems
theory, and nonlinear small-gain method. To the best of the au-
thors’ knowledge, this paper represents the first step towards the
ADP design of output-feedback adaptive optimal controllers for
continuous-time nonlinear systems with both static and dynamic
uncertainties.

The remainder of this paper is organized as follows. In Sec-
tion 2, we formulate the control problem, and briefly review the
linear–quadratic regulator (LQR) theory. In Section 3, we develop
adaptive optimal output-feedback strategies by using both policy
iteration (PI) and VI based ADP methods. Robustness and subopti-
mality of the closed-loop system are analyzed in Section 4. An ap-
plication to a practical example on the power systems is presented
in Section 5. Finally, conclusions are contained in Section 6.
Notations. Throughout this paper, R+ denotes the set of nonnega-
tive real numbers. |·| represents the Euclideannorm for vectors and
the induced norm for matrices. A continuous function α : R+ →
R+ belongs to class K if it is increasing and α(0) = 0. It belongs
to class K∞ if, in addition, it is proper. A continuous function β :
R+ × R+ → R+ belongs to class KL if for each fixed t , the func-
tion β(·, t) is of class K and, for each fixed s, the function β(s, ·) is
non-increasing and tends to 0 at infinity.⊗ indicates the Kronecker
product operator and vec(A) = [aT1, a

T
2, . . . , a

T
m]

T , where ai ∈ Rn

are the columns of A ∈ Rn×m. For a symmetric matrix P ∈ Rm×m,
vecs(P) = [p11, 2p12, . . . , 2p1m, p22, 2p23, . . . , 2pm−1,m, pmm]

T

∈ R
1
2m(m+1). For an arbitrary column vector v ∈ Rn, vecv(v) =

[v21, v1v2, . . . , v1vn, v
2
2, v2v3, . . . , vn−1vn, v

2
n]

T
∈ R

1
2 n(n+1). λM(P)

and λm(P) denote the maximum and the minimum eigenvalue of
the real symmetric matrix P . For any piecewise continuous func-
tion u : R+ → Rm, ∥u∥ stands for supt≥0 |u(t)|.

2. Problem formulation and preliminaries

Consider a linear subsystem interacting with a nonlinear sub-
system known as the dynamic uncertainty, characterized by the
ζ -system:

ẋ = Ax+ B(u+∆(ζ , y)), (1)

ζ̇ = g(ζ , y), (2)
y = Cx (3)

where x ∈ Rn, ζ ∈ Rp are unmeasurable states with an unknown
integer p > 0, u ∈ Rm the input, y ∈ Rr the output. A ∈ Rn×n, B ∈
Rn×m, and C ∈ Rr×n are unknown systemmatriceswith (A, B) con-
trollable, (A, C) observable satisfying |A| ≤ AM , |B| ≤ BM , and
|C | ≤ CM . g : Rp

× Rr
→ Rp and ∆ : Rp

× Rr
→ Rm are

two unknown, locally Lipschitz functions with g(0, 0) = 0 and
∆(0, 0) = 0.

Remark 2.1. The system (1)–(3) belongs to the class of intercon-
nected systems studied by Saberi, Kokotovic, and Summers (1990).
If ∆(ζ , y) = ∆1(y), the system (1) and (3) is a linear system with
nonlinear output injection (see Krener & Isidori, 1983).

Assumption 2.1. The ζ -system with y regarded as the input and
∆ as the output has the strong unboundedness observability (SUO)
propertywith zero offset (Jiang, Teel, & Praly, 1994), i.e., there exist
a function σ1 of class KL and a function γ1 of class K such that
for anymeasurable essentially bounded control y(t) on [0, T )with
0 < T ≤ +∞, the solution ζ (t) of (2) right maximally defined on
[0, T ′)(0 < T ′ ≤ T ) satisfies

|ζ (t)| ≤ σ1(|ζ (0)|, t)+ γ1(∥[yT[0,t],∆
T
[0,t]]

T
∥), ∀t ∈ [0, T ′)

where y[0,t] and∆[0,t] are truncated functions of y and∆ over [0, t],
respectively.

Assumption 2.2. The ζ -system is input-to-output stable (IOS)
(Sontag, 2007), i.e., there exist a function σ∆ of class KL and a
function γ∆ of class K such that, for any initial state ζ (0), any
measurable essentially bounded input y and any t ≥ 0,

|∆(t)| ≤ σ∆(|ζ (0)|, t)+ γ∆(∥y∥). (4)

Considering the reduced-order system (1) and (3) in the absence of
the dynamic uncertainty

ẋ = Ax+ Bu,
y = Cx, (5)

define the cost as

Jc(x(0)) =

∞

0
(yT (τ )Qy(τ )+ uT (τ )Ru(τ ))dτ (6)

where Q = Q T
≥ 0 and R = RT > 0 with (A,

√
QC) observable.

Moreover, a minimal cost J∗c = xT (0)P∗x(0) in (6) is obtained by
using the following control policy

u = −R−1BTP∗x := −K ∗x (7)

where P∗ = (P∗)T > 0 is the unique solution to the algebraic
Riccati equation (ARE):

ATP∗ + P∗A+ CTQC − P∗BR−1BTP∗ = 0. (8)

A discretized model of (5) is obtained by taking periodic sampling

xk+1 = Adxk + Bduk,

yk = Cxk (9)

where Ad = eAh, Bd = (
 h
0 eAτdτ)B, and h > 0 is the sam-

pling period. Suppose the sampling frequency ωh = 2π/h is non-
pathological (Chen & Francis, 1995). Then, both (Ad, C) and
(Ad,
√
QC) are observable with (Ad, Bd) controllable. The cost for

(9) is

Jd(x(0)) =
∞
j=0

(yTj Qdyj + uT
j Rduj) (10)

where Qd = Qh, Rd = Rh. Notice that (10) can be viewed as a
first-order approximation of equation (7) inMelzer and Kuo (1971)
which itself is the discretized version of cost (6).

The optimal control law minimizing (10) is

uk = −(Rd + BT
dP
∗

d Bd)
−1BT

dP
∗

d Adxk := −K ∗d xk (11)

where P∗d = P∗d
T > 0 is the unique solution to

AT
dP
∗

d Ad − P∗d + CTQdC

− AT
dP
∗

d Bd(Rd + BT
dP
∗

d Bd)
−1BT

dP
∗

d Ad = 0. (12)
The sensitivities of P∗d and K ∗d , with respect to sampling period h,
are discussed in the following lemma.
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