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a b s t r a c t

This work considers a pursuit–evasion game in which a number of pursuers are attempting to capture
a single evader. Cooperation among multiple agents can be difficult to achieve, as it may require the
selection of actions in the joint input space of all agents. This work presents a decentralized, real-time
algorithm for cooperative pursuit of a single evader by multiple pursuers in bounded, simply-connected
planar domains. The algorithm is based onminimizing the area of the generalized Voronoi partition of the
evader. The pursuers share state information but compute their inputs independently. No assumptions
are made about the evader’s control strategies other than requiring the evader control inputs to conform
to a speed limit. Proof of guaranteed capture is shownwhen the domain is convex and the players’ motion
models are kinematic. Simulation results are presented showing the efficiency and effectiveness of this
strategy.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies a multi-agent pursuit–evasion game, with
a number of pursuers attempting to capture a single evader in a
simply connected planar region. The pursuers’ speeds are equal to
or greater than that of the evader, and the objective is to find a
successful cooperative strategy for the pursuers. Finding cooper-
ation strategies among multiple agents in adversarial games can
be challenging, as computing solutions over the joint state space
of multiple agents can greatly increase computational complex-
ity. The class of pursuit–evasion games considered here can, in a
general theoretical setting, be treated as a multi-agent differential
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game. The solution to such a problem can, in principle, be ob-
tained by solving the corresponding Hamilton–Jacobi–Isaacs (HJI)
partial differential equation (PDE) (Başar & Olsder, 1999; Evans &
Souganidis, 1984; Isaacs, 1967; Mitchell, Bayen, & Tomlin, 2005).
In particular, one can define the game through a value function
representing the time-to-capture, with the evader attempting to
maximize this function and the pursuers attempting to minimize
this function. Under certain technical conditions, the value of the
game can be characterized as the solution to anHJI equation,which
can be in turn used to synthesize optimal controls for the pur-
suers to minimize time-to-capture. Solutions to HJI equations are
typically found either using the method of characteristics (Başar
& Olsder, 1999; Isaacs, 1967), in which optimal trajectories are
found by integrating backward from a known terminal condition,
or via numerical approximation of the value function on a grid of
the continuous state space (Ding, Sprinkle, Shankar Sastry, & Tom-
lin, 2008; Falcone & Ferretti, 2002; Huang, Ding, Zhang, & Tomlin,
2011; Mitchell et al., 2005).

The practical usage of the differential game approach, however,
faces several computational challenges. While the characteristic
solutions are useful in understanding optimal solutions qualita-
tively, they require backward integration from terminal configura-
tions, which can make it difficult to generate strategies when only
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the initial configurations of the agents are known. On the other
hand, HJI computation on grids suffers from the curse of dimen-
sionality: computing solutions to HJI equations is computationally
infeasible for scenarios with a large number of agents, as the grid
required for approximating the value function grows exponentially
in the dimensions of the joint configuration space.

For certain games and game configurations, it is possible to con-
struct strategies for the agents geometrically. For example, pure-
distance pursuit, in which a pursuer minimizes the instantaneous
distance to the evader, has been shown to be the optimal pursuit
strategy for certain zero-sum differential games in open environ-
ments (Isaacs, 1967), as well as a choice of strategy which guar-
antees capture in simply-connected regions (Alexander, Bishop, &
Ghrist, 2006). In other cases, strategies based upon a geometric
argument have also been found for coordinating groups of pur-
suers in open, unbounded spaces (Kopparty & Ravishankar, 2005).
These methods are computationally efficient in generating control
strategies, but are often limited to relatively simple game environ-
mentswithnoobstacles and typically assumehomogeneous player
speed.

In addition to games in continuous time and continuous spaces,
research in discrete, turn-based games played on graphs have
shown that three pursuers are sufficient and sometimes necessary
to capture any evader in a planar graph (Aigner & Fromme,
1984; Parsons, 1978). These results for discrete games have led to
strategies for a class of continuous games knownas visibility-based
pursuit–evasion (Gerkey, Thrun, & Gordon, 2006; Guibas, Latombe,
Lavalle, Lin, & Motwani, 1997; LaValle & Hinrichsen, 2001).
The graph-based analysis has also recently inspired results for
continuous games showing that three pursuers are also sufficient
and sometimes necessary to capture an evader with equal speed in
boundedpolygonal domainswith obstacles (Bhadauria, Klein, Isler,
& Suri, 2012). Similar to the graph and visibility pursuit strategies,
they operate on the principle of successively reducing the game
domain into a single simply-connected region by having pursuers
block the evader from portions of the game space. However, to the
best of our knowledge, currently implementable versions of these
strategies do not yet exist. For all thesemethods, the game domain
reduction requires searching over a large set of discrete actions,
limiting the size of problems that can be practically solved.

In this paper, we present a decentralized pursuit strategy
based on the Voronoi decomposition of the game domain with
respect to agent positions, where the pursuers cooperatively
minimize the area of the evader’s Voronoi partition. Each pursuer
influences the evader’s partition only through the shared Voronoi
boundary. Thus, each pursuer’s input decouples from that of the
other pursuers and can be computed independently. However,
their inputs are coupled through the Voronoi partition, giving
rise to cooperation among the pursuers. The pursuit algorithm is
decentralized in the sense that the pursuers compute their control
actions independently given the agent positions, which is the only
shared information. This approach allows computation to take
place in the low dimensional configuration space of individual
agents instead of the high dimensional joint state space of all
agents (as is the case in the HJI computation), thus enabling real-
time implementation.Wemention that the body ofwork described
in Ames et al. (2014) and Bhadauria et al. (2012) is relevant to the
multi-agent pursuit–evasion problems discussed in this paper, and
is exciting as it provides formal proofs for the existence of pursuit
strategies that guarantee capture, with provable bounds on the
time-to-capture. On the other hand, the practical computation of
such ideal strategies is still a subject of ongoing investigations. Our
approach can be viewed as complementary to these theoretical
contributions, in that we derive computable solution strategies
for the particular problem scenario of convex environments and
equal speeds. The insights obtained from this scenariomay provide
the foundation for the construction and implementation of more
general strategies.

1.1. Our contributions

Our contributions are threefold. First, we propose a Voronoi
partition based pursuit strategy and show that, under the assump-
tions of convex environments, kinematic agent dynamics, and
equal speeds of all players, this strategy results in guaranteed cap-
ture of the evader in finite time. Some elements of the results for
convex domains and equal speeds were first presented in Huang,
Zhang, Ding, Stipanović, and Tomlin (2011). This work elaborates
upon the previous results, gives an equivalent characterization of
the control input that is more intuitive and easily implementable
(Theorem 2) and provides a simpler proof of guaranteed capture
based on a construction of an energy function (Theorem 3).

Second, we generalize the Voronoi pursuit strategy to non-
convex game domains and unequal agent speeds, in particular
when the pursuers are faster than the evader, and show how
to apply a modified fast marching method (FMM) (Zhou, Takei,
Huang, & Tomlin, 2012) to quickly compute generalized Voronoi
partitions and pursuer inputs. This approach provides a scalable,
computationally efficient, and easily implementable algorithm for
computing cooperative pursuer inputs in amulti-pursuer scenario.

Third, extensive simulation studies are carried out to show the
effectiveness of the proposed strategy and compare its perfor-
mance and computational complexity with several representative
methods in the literature. In particular, it is shown that the al-
gorithm encourages effective cooperative pursuit among multi-
ple agents, resulting in superior performance to techniques such
as the pure-pursuit, in which the pursuers attempt to minimize
the instantaneous distance to the evader, and comparable perfor-
mance to the optimal pursuit strategy based on HJI calculation,
which is computational intensive and therefore not feasible be-
yond a single-pursuer–single-evader scenario.

2. The cooperative pursuit problem

Consider a multi-agent pursuit–evasion game involving N pur-
suers and a single evader, taking place in an open, simply con-
nected regionΩ inR2. Let xe ∈ R2 be the position of the evader and
xip ∈ R2 be the position of pursuer i. The equations of motion are

ẋe = d, xe(0) = x0e ,

ẋip = ui, xip(0) = xi,0p , i = 1, . . . ,N, (1)

where d and ui are the velocity control inputs of the evader and
pursuers, respectively, and x0e , x

i,0
p ∈ Ω are the initial evader and

pursuer positions. The respective agent inputs are constrained to
lie within sets Ui ⊂ R2 for the pursuers and D ⊂ R2 for the evader.
In this paper, Ui and D are assumed to be the following:

D = {d | ∥d∥ ≤ ve,max}, Ui = {ui | ∥ui∥ ≤ vi,max}, (2)

where ve,max and vi,max are the maximum speeds of the evader and
the pursuers, respectively, and ∥ · ∥ denotes the Euclidean norm in
R2. Themotions of the evader and pursuers, as described by Eq. (1),
are also constrained to lie within the regionΩ , i.e.,

xe(t), xip(t) ∈ Ω, ∀t ≥ 0. (3)

Any velocity input d(t) or ui(t) satisfying the constraints (2) and
(3) is called an admissible input for the evader or pursuer i, respec-
tively.

The goal of the pursuers is to capture the evader by having
at least one of the pursuers come within a distance rc > 0 of
the evader. To achieve this capture condition, each pursuer selects
control inputs using a pursuit strategy µi(xe, x1p, . . . , x

N
p ) based

upon observations of the evader and pursuer positions at each time
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