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a b s t r a c t

This paper investigates the iterative learning problem for discrete-time systems with event-triggered
scheme and quantization. The event-triggered scheme is firstly considered in the iterative learning
controllers to reduce the number of iteration steps to be updated. Here, the event-triggered scheme is
designed depending on time t and iterative learning step k. Quantization is then introduced in the event-
triggered controllers and some relaxed conditions are presented to guarantee the tracking problem by
using some interval matrix properties. Finally, simulation results are given to illustrate the usefulness of
the developed criteria.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Iterative learning control (ILC) is an effective technique that
aims to improve the current performance of uncertain systems
over a fixed time interval by learning from previous executions
(trials, iterations, passes). The focus of ILC is to improve the
performance of systems that execute a repeated operation. In
the past decades, ILC has been successfully applied to industrial
robots (Arimoto, Kawamura, & Miyazaki, 1984), chemical reactors
(Mezghani et al., 2002), input saturation (Tan, Xu, Norrlöf, &
Freeman, 2011; Xiong, Ho, & Yu, 2015; Xu, Tan, & Lee, 2004; Zhang,
Chi, & Ji, 2015a), heat equations (Huang, Xu, Li, Xu, & Yu, 2013),
sampled-data systems (Abidi & Xu, 2011), andmulti-node systems
(Li & Li, 2014; Meng, Jia, & Du, 2015a,b; Meng, Jia, Du, & Yu, 2013;
Meng, Jia, Du, & Zhang, 2014;Meng&Moore, 2016). For example, Li
et al. in Li and Li (2014) showed that all the followers can track the
leader uniformly on the finite interval [1, T ] for consensus problem
and keep the desired distance from the leader to achieve velocity
consensus uniformly on [1, T ] for the formation problem. In
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Meng et al. (2014), Meng et al. dealt with the formation control
problems for multi-node systems with nonlinear dynamics and
switching network topologies. It was shown in Meng et al. (2015a)
that these uncertainties of multi-node systems are dynamically
changing not only along the time axis but also along the iteration
axis.

In the above literature, the given ILC algorithms are always
updated in each iteration step (see Eq. (14) in Tan et al., 2011 and
Eq. (4) in Meng et al., 2015a). However, it is costly and unnecessary
to update the ILC algorithm in each iteration step when the iterative
controller change little in some successive iteration steps. To reduce
the number of iteration steps to be updated, an event-triggered control
scheme is introduced in this paper. In the event-triggered control,
the measurement error plays a key role in the event design.
When the measurement error reaches the prescribed threshold,
an event is triggered and the controller is updated. In the recent
years, as a good digital control scheme that can be used to reduce
communication load, event-triggered control has been receiving
increasing attention in wireless sensor/actuator systems (Mazo
& Tabuada, 2011), networked control systems (Yue, Tian, & Han,
2013), fuzzy systems (Peng, Han, & Yue, 2013), sampled-data
control systems (Peng & Han, 2013; Zou, Wang, Gao, & Liu, 2015),
multi-node systems (Fan, Feng, Wang, & Song, 2013; Hu, Liu, &
Feng, 2015; Zhang, Hao, Zhang, & Wang, 2014). Different with the
existing literature, the event-triggered scheme will be applied on ILC
algorithm in this paper and the event-triggered iterative learning
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controller will be designed to be related to time t and iterative
learning k.

In addition, in some applications, such as sensor systems and
industrial control systems, the aim is to controlmultiple dynamical
systems by using multiple sensors to exchange information over
a communication network. Because of the limitation of storage
and communication bandwidth among nodes, the original precise
information needs to be quantized. Hence, it is necessary to
conduct analysis on the quantizers and understand how much
effect the quantization makes on dynamic systems. In fact, the
problem of quantized control for dynamic systems has been
available in the literature (Delchamps, 1990; Fu & Xie, 2005; Liu,
Guan, Li, Zhang, & Xiao, 2012; Wang, Shen, Shu, & Wei, 2012;
Zhang, Zhang, Hao, & Wang, 2015b). Unfortunately, to the best of
our knowledge, quantized ILC problem for dynamic systems has not
been fully investigated despite its potential in practical applications.
Furthermore, event-driven mechanism has not been used in ILC to
reduce the requirements of storage and communication bandwidths.
The aim of this paper is to address these problems.

Hence, our objectives in this study are twofold: (1) Consider
the event-triggered scheme in the iterative learning controllers to
reduce the number of iteration steps to be updated and discuss the
tracking problem of discrete-time systems with event-triggered
scheme in a finite interval; (2) Consider quantization in event-
triggered controllers for discrete-time systems, and present some
relaxed conditions to solve the tracking problem of the discussed
systems by using some interval matrix properties.

The remainder of this paper is organized as follows: The
problem formulation is presented in Section 2. In Section 3, the
event-triggered scheme is considered in the iterative learning
controllers. Moreover, quantization is applied in the event-
triggered controllers. In Section 4, simulations are carried out to
illustrate the effectiveness of the main results. Finally, conclusions
are drawn in Section 5.
Notation: Throughout this study, the superscript T represents the
transpose. For all x = (x1, x2, . . . , xn)T ∈ Rn, define ∥x∥ =n

i=1 x
2
i

 1
2 . For a matrix A, ∥A∥ denotes the spectral norm defined

by ∥A∥ = (λM(ATA))
1
2 , and ρ(A) is the spectral radius with ρ(A) =

maxi |λi(A)|, where λi(A) denotes the ith eigenvalue of matrix A,
respectively.

2. Preliminaries

Consider an iterative learning system consisting of N nodes (N
is a positive integer). Each node has to deal with two independent
dynamic processes: the first process shows the system dynamics
about time t; the second process describes the system dynamics of
node i about iterative learning k. Hence, the system dynamics are
described by

xi(t + 1, k) = cixi(t, k) + biui(t, k), (1)

where xi(t, k) is the state vector of node i, i = 1, 2, . . . ,N ,
and x(t, k) = (x1(t, k), x2(t, k), . . . , xN(t, k))T ∈ RN ; t ∈

{0, 1, . . . , T } (T > 0 is a positive integer) and k ∈ Z+ (Z+ is the
set of nonnegative integers); C = diag(c1, c2, . . . , cN) ∈ RN×N

and B = diag(b1, b2, . . . , bN) ∈ RN×N are constant matrices;
ui(t, k) is the iterative learning controller of node i and u(t, k) =

(u1(t, k), u2(t, k), . . . , uN(t, k))T ∈ RN . For every node i (i ∈

{1, 2, . . . ,N}) in system (1), it is said to achieve the tracking of a
desired reference trajectory if

lim
k→+∞

xi(t, k) = x∗(t), t ∈ {0, 1, . . . , T }, (2)

where x∗(t) ∈ R is the desired reference trajectory. Let ei(t, k) =

xi(t, k) − x∗(t) be the tracking error of node i, and e(t, k) =

Fig. 1. The broadcasting iteration sequence {kil} of node i.

(e1(t, k), e2(t, k), . . . , eN(t, k))T . Note that the tracking objective
(2) holds if and only if limk→+∞ e(t, k) = 0, for ∀ t ∈ {0, 1, . . . , T }.

In the existing literature (see Meng et al., 2015a, 2014), the
ILC u(t, k) is always updated in each iteration k. However, it is
not necessary to update the ILCs if the changes of controllers in
some successive iteration steps are small. Hence, the ILCs with
event-triggered strategy will be considered in this paper. We
define the state measurement error of node i by δi(xi(t, k)) =xi(t, k) − xi(t, k), ∀ i ∈ {1, 2, . . . ,N}, t ∈ {0, 1, . . . , T }, and
∀ k ∈ Z+. Here,xi(t, k) denotes the latest sampled state of node i,
which will be given later. Note that, the transmission information
needs to be coded or quantized due to the limitation of storage
and communication bandwidth among nodes. Hence, based on
the measurement error of node i, the event-triggered strategies
without and with quantization are given in the following

|δi(xi(t, k))| = γi ·

 n
j=1

lijxj(t, k)
 , (3)

|δi(xi(t, k))| = γi ·

 n
j=1

lijq(xi(t, k))
 , (4)

where γi > 0, matrix L = (lij)N×N ∈ RN×N , and ∥L∥ ≠ 0. And q(·) :

R → Λϖ is a logarithmic quantizer, for a given accuracy parameter
ϖ ∈ (0, 1), one can define the logarithmic set of quantization
levels
Λϖ = {±ω(i) : ω(i) = ϖ iω(0), i = ±1, ±2, . . .}

{±ω(0)}


{0}, ω(0) > 0. (5)

The associated quantizer q(·) is defined as follows:

q(x) =


ω(i), if

1
1 + σ

ω(i) < x ≤
1

1 − σ
ω(i);

0, if x = 0;
−q(−x), if x < 0,

(6)

where σ =
1−ϖ
1+ϖ

is named sector bound in Fu and Xie (2005).
If event triggering condition (3) (or (4)) is satisfied, node i will
broadcast its state and update its control protocol. The infor-
mation broadcasting iteration sequence of node i is {kil} (i ∈

{1, 2, . . . ,N}, l ∈ Z+) (see Fig. 1). And xi(t, k) is defined asxi(t, k) = xi(t, kil), k ∈ [kil, k
i
l+1), l ∈ Z+. From the definition of

logarithmic quantizer, the quantization error satisfies the follow-
ing condition:

q(xi(t, k)) =xi(t, k) + Λ(t, k)xi(t, k), (7)
where Λ(t, k) is a scalar and satisfies that Λ(t, k) ∈ [−σ , σ ],
∀ t ∈ {0, 1, . . . , T }, i ∈ {1, 2, . . . ,N} and ∀ k ∈ Z+.

According to the event triggering conditions (3) and (4), we
shall consider the ILCs with and without quantization, which can
be expressed as

ui(t, kil+1) =ui(t, kil) + Γ i
1

n
j=1

lijxi(t + 1, k), (8)

ui(t, kil+1) =ui(t, kil) + Γ i
2

n
j=1

lijq(xi(t + 1, k)), (9)

and ui(t, k) = ui(t, kil), k ∈ [kil, k
i
l+1), l ∈ Z+, Γ1 = diag(Γ 1

1 , Γ 2
1 ,

. . . , Γ N
1 ) and Γ2 = diag(Γ 1

2 , Γ 2
2 , . . . , Γ N

2 ) are learning gain
matrices, which will be designed later.
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