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a b s t r a c t

This paper considers a remote state estimation problem, where a sensor measures the state of a linear
discrete-time system. The sensor has computational capability to implement a local Kalman filter. The
sensor-to-estimator communications are scheduled intentionally over a finite time horizon to obtain
a desirable tradeoff between the state estimation quality and the limited communication resources.
Compared with the literature, we adopt a Gaussianity-preserving event-based sensor schedule bypassing
the nonlinearity problem met in threshold event-based polices. We derive the closed-form of minimum
mean-square error (MMSE) estimator and show that, if communication is triggered, the estimator cannot
do better than the local Kalman filter, otherwise, the associated error covariance, is simply a sum of the
estimation error of the local Kalman filter and the performance loss due to the absence of communication.
We further design the scheduler’s parameters by solving a dynamic programming (DP) problem. The
computational overhead of the DP problem is less sensitive to the system dimension compared with that
of existing algorithms in the literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of controlled communication for the state es-
timation of a dynamical system has been prevailing in recent
years. Controlled communication in general refers to reducing the
communication rate intentionally to obtain a desirable tradeoff
between the state estimation quality and the limited communi-
cation resources. This is rooted in the fact that the communica-
tion between the wireless sensors and the estimator at full rate
is unlikely to occur for most practical applications. For instance,
since the sensors are usually battery-powered and sparsely de-
ployed, the replacement of onboard battery is not possible in
most occasions. Reducing the communication rate is reasonably an

✩ The work by X. Ren, D. Han and L. Shi was supported by a HK RGC theme-based
project T23-701/14N. The work by D. Shi was supported by the National Natural
Science Foundation of China under Grant 61503027. The material in this paper was
not presented at any conference. This paper was recommended for publication in
revised form by Associate Editor Gianluigi Pillonetto under the direction of Editor
Torsten Söderström.

E-mail addresses: junfengw@kth.se (J. Wu), xren@connect.ust.hk (X. Ren),
dhanaa@connect.ust.hk (D. Han), dshi@ualberta.ca (D. Shi), eesling@ust.hk (L. Shi).
1 Tel.: +65 8629 2706; fax: +852 2358 1485.

alternative approach to resolve the energy saving problem. An-
other incentive for controlled communication is to avoid traffic
congestion of the network shared by a vast number of sensors.

Estimation error covariance is most widely used for measuring
the estimation quality. Tominimize inevitable enlarged estimation
error covariance due to the reduced communication rate, a
communication scheduling strategy for a sensor is needed. Yang
and Shi (2011) provided an insight that communications should be
initiated periodically ormore generally, as uniformly as possible, to
minimize the average error covariance. For the so-called variance-
based triggered scheduling in Trimpe and D’Andrea (2014),
covariance recursion asymptotically converges to a periodic one.
Informally, purely using the information in the error covariance is
likely to lead to a periodic communication schedule. Another line
of research direction such as Han, Cheng, Chen, and Shi (2013),
Shi, Chen, and Darouach (2016), Shi, Chen, and Shi (2015) and
Shi, Elliott, and Chen (2016) is the event-based sensor scheduling,
where communication is triggered by a certain event defined on
the systemstate. Threshold event-based communication schedules
have been proposed by Battistelli, Benavoli, and Chisci (2012),
Lipsa and Martins (2011), Molin (2014), Wu, Jia, Johansson, and
Shi (2013) and Xu and Hespanha (2005), in different contexts
but can hardly generate closed-form of the minimum mean-
square error (MMSE) estimates. To obtain a tractable and simple
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estimator, Han et al. (2015) proposed a stochastic event-based
mechanism, bypassing the nonlinear problem met in threshold
event-based policies.

In thisworkwe focus on a finite-horizon sensor communication
scheduling problem. The sensor, as a smart one, has computational
capability to implement a local Kalman filter. The utilization of
the onboard computation unit has been shown to help improve
estimation performance (Hovareshti, Gupta, & Baras, 2007). To
alleviate the degradation of estimation performance, we adopt
an event-based sensor scheduling mechanism. The benefit we
obtain from this type of mechanisms is attributed to the fact
that the absence of triggering provides side information to the
estimator. If we pursue an optimal event-based law, it is very
likely that the Gaussianity of the conditional distribution in
the system state will be destroyed, for which no closed-form
expression of the MMSE estimate can be derived. The distribution
propagation turns out to be computationally costly under non-
Gaussian circumstances. In summary, the information contained
in the absence of triggering, on one hand, mitigates the Kalman
filtering’s performance degradation, but on the other hand, may
cause difficulty in computing distribution propagation. To tackle
the challenge, in this paperwe introduce a similar stochastic event-
based mechanism used in Han et al. (2015). Compared with Han
et al. (2015), the contribution of this paper is summarized as
follows:

(1) We use a simple static parameter estimation example to
motivate the stochastic event-based scheduling policy. In the
example, the stochastic strategy maintains the a posteriori
distributions Gaussian with possibly the least variance.

(2) We present a closed-form expression of the MMSE estimate
for the remote estimator and show that, if and when the
communication is triggered, the estimator cannot do any
better than the local Kalman filter, otherwise, the associated
error covariance, is simply a sum of the estimation error of the
local Kalman filter and the performance loss due to the absence
of communication.

(3) The sensor scheduling problem can be modeled as a decision
process. The sensor can sequentially design the scheduler’s
parameters by solving a dynamic programming (DP) problem,
efficiently allocating communication resource over a finite
time-horizon. The computational overhead of the DP problem
is less sensitive to the dimension of systems comparedwith the
existing works.

Notation: N is the set of positive integers numbers. Sn
+

is the
set of n by n symmetric positive semi-definite matrices over the
real field. The notation p(x, x) represents the probability density
function (pdf) of a random variable x taking value at x. For a matrix
X , we abuse the notations det(X) and X−1, in case of a singular
matrix X , to respectively denote the pseudo-determinant and the
Moore–Penrose pseudoinverse ofX . The notationX1/2 is the square
root of a positive semidefinite matrix X . For a Borel set B,L(B)
stands for the Lebesguemeasure.× denotes Cartesian product and
⊕ stands for Minkowski addition of two sets, respectively. Define
the function h: Sn

+
→ Sn

+
as h(X) , AXA′

+ Q .

2. Kalman filter under controlled communication

Consider a linear time-invariant system:

xk+1 = Axk + wk, (1a)
yk = Cxk + vk, (1b)

where xk ∈ Rn is the system state vector and yk ∈ Rm is the
observation vector. The noises wk ∈ Rn and vk ∈ Rm are zero-
mean Gaussian random vectors with E[wkw

′

j] = δkjQ (Q ≥

Fig. 1. Remote state estimation with a communication scheduler.

0),E[vkv
′

j ] = δkjR (R > 0), where δkj is the Kronecker delta
function with δkj = 1 if k = j and 0 otherwise, and E[wkv

′

j ] =

0 ∀j, k. The initial state x0 is a zero-mean Gaussian random vector
that is uncorrelated with wk and vk and has covariance Σ0 ≥

0. The pair (C, A) is assumed to be observable and (A,Q 1/2) is
controllable.

All the measurements collected by the sensor up to time k is
denoted by y1:k , {y1, . . . , yk}. The sensor locally computes x̂sk ,
E[xk|y1:k], the MMSE estimate of xk based on y1:k. Let P s

k be the
associated estimation error covariance matrix, i.e., P s

k , E[(xk −

x̂sk)(xk − x̂sk)
′
|y1:k], which is computed via a standard Kalman filter

initialized with x̂s0 = 0 and P s
0 = Σ0. The sensor is equipped with a

transmission scheduler (see Fig. 1), which determines whether or
not x̂sk should be sent to the estimator, according to the history of
transmission decision actions and the measurements collected by
the sensor up to time k. Let γk ∈ {0, 1} denotes the communication
decisionmade by the scheduler. If γk = 1, x̂sk is sent; otherwise x̂sk is
not sent. Since the sensor local estimation is initializedwith x̂sk = 0,
without loss of generality, we assume γ0 = 1. To focus on the role
of the sensor scheduler in achieving a desired tradeoff between
the remote estimation quality and communication resource, other
aspects of imperfect communication, such as packet dropouts,
delays and data quantization, will not be taken into account, that
is, if sent by the senor, the data will reach the estimator side.

It should be noted that before deciding γk at time k, γ1:k−1 ,
{γ1, . . . , γk−1} is known by the sensor. Besides, the sensor has all
the measurements collected by itself. The information pattern of
the sensor up to after communication at time k, if any, is denoted
as IS

k , i.e.,

IS
k , {y1, . . . , yk} ∪ {γ1, . . . , γk}, with IS

0 = ∅.

Similarly, we denote by IE
k the information pattern at the remote

estimator up to after communication at time k. Because of the
perfect communication channel assumed, γk is known to the
estimator. IE

k contains both the history of communication actions
γ1:k and the measurement data received from the sensor, that is,

IE
k = {γ1x̂s1, . . . , γkx̂

s
k} ∪ {γ1, . . . , γk}, with IE

0 = ∅.

We define a communication scheduling policy applied by the
sensor at time k as a function fk:

γk = fk(IS
k−1, yk), (2)

where fk’s are assumed to be measurable mappings. A finite-
horizon sensor communication policy Θ is accordingly defined as
a sequence of fk’s: Θ , {f1, f2, . . . , fT} . Because the estimator
is aware of Θ being used by the sensor, it computes x̃k, its own
estimate of the state xk based on IE

k , x̃k = gk(IE
k ), where gk’s

are measurable mappings. A finite-horizon remote estimator Ξ is
accordingly defined as a sequence of gk’s: Ξ , {g1, g2, . . . , gT} .
The estimator computes Pk, the corresponding estimation error
covariance matrix, as: Pk = EΘ


(xk − x̃k)(xk − x̃k)′ | IE

k


, where

EΘ [·|·] denotes conditional expectation with respect to a fixedΘ .
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