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a b s t r a c t

This paper deals withmean square state estimation over sensor networkswith a fixed topology. Attention
is focused on designing local stationary state estimators with a general structure while accounting for
the network communication topology. Two estimator design approaches are proposed. One is based
on the observability Gramian, and the other on the controllability Gramian. The computation of the
estimator state-spacematrices is recast as off-line convex optimization problems and requires the system
asymptotic stability and global knowledge of the network topology. Convergence of the estimation error
variance is ensured at each network node and a guaranteed performance in the mean square sense is
achieved. The proposed approaches are also extended for designing robust filters to handle polytopic-
type parameter uncertainty.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A wide range of systems are monitored by sensor networks.
This has resulted in an important research activity ondecentralized
state estimation for linear dynamic systems, as surveyed in
Farina, Espinosa, Garcia, and Scattolini (2011). The work reported
here deals with sensor networks with neighbor-to-neighbor
communication. Specifically, at a given node, information is only
received from a subset of nodes with which it can communicate
directly. The considered decentralized state estimation problem
aims at estimating the whole state vector at each sensor node
on the basis of the overall model of the system (Battistelli &
Chisci, 2014; Cattivelli & Sayed, 2010; Olfati-Saber, 2007, 2009;
Ugrinovskii, 2011). This problem is referred to as distributed state
estimation. It should be distinguished from partition-based state
estimation where only a local model of the observed system is
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available at each node and the problem amounts to estimate the
part of the system state associated to this local model at each node
(Farina, Ferrari-Trecate, & Scattolini, 2010; Khan & Moura, 2008;
Stankovic, Stankovic, & Stipanovic, 2009a,b).

Distributed state estimation was addressed initially by includ-
ing an additional step to the local Kalman filter, besides the
measurement update step and the prediction step, a so-called
consensus or diffusion step. This new step consists in propagating
the state estimate (Cattivelli & Sayed, 2010; Olfati-Saber, 2009) or
thewhole probability density function between neighboring nodes
(Battistelli & Chisci, 2014).

The properties of the different schemes were analyzed in
terms of stability and performance. For most existing algorithms,
some sort of local observability or detectability is required to
ensure stability. Exceptions include Battistelli and Chisci (2014)
andUgrinovskii (2011), which only require collective detectability.
As far as performance is concerned, the different distributed
observer schemes are often compared through case studies with
the centralized Kalman filter, which is seen as a benchmark.
However, the selection of the observer gains to meet some
optimality criterion is only considered in a few studies. Different
criteria have been proposed. In Alriksson and Rantzer (2006) the
minimization of the mean square estimation error at each node is
considered. Other problem formulations adopt theminimization of
the mean square estimation error over the whole network (Carli,
Chiuso, Schenato, & Zampieri, 2008; Stankovic et al., 2009a), the
minimization of the H∞ gain from noise to estimation error (Li &
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Sanfelice, 2014), or the minimization of the worst case consensus
performance (Ugrinovskii, 2011). In the case of mean square
error minimization, only approximate solutions were reported.
Indeed, either the classical Kalman filter recurrence is used in the
measurement update step, or the consensus gains are restricted to
a certain structure or even imposed a priori. On the other hand, in
Ugrinovskii (2011), the minimization of the worst case consensus
is achieved through an LMI-based design method. However, this
criterion tends to enforce high interconnection (or consensus)
gains, which can be alleviated by introducing additional convex
constraints in order to limit the magnitude of these gains.

For handling modeling uncertainties, an adaptive sliding mode
observer has been considered in Menon and Edwards (2013) to
copewith norm-bounded uncertainties, whereas an LMI-based ap-
proach to achieve robustnesswith respect to parametric uncertain-
ties meeting a matching condition, as well as sector nonlinearities,
has been proposed in Lv, Liang, and Cao (2011). As for distributed
observers for nonlinear systems, recent contributions include Bat-
tistelli, Chisci, Mugnai, and Farina (2015), Farina, Ferrari-Trecate,
and Scattolini (2012), and Zeng and Liu (2015).

This paper aims at designing stationary local state estimators
with an optimized mean square state estimation error. A certain
degree of consensus between the different nodes is enforced
by propagating the estimator state vector between neighboring
nodes. The main contribution of this paper is the development
of LMI-based methods for designing local state estimators with
a general structure. The methodology is first developed for
uncertainty-free linear time-invariant systems. Then, it is extended
to deal with polytopic-type parameter uncertainties. The proposed
approach applies only to asymptotically stable systems, with
the filters design being carried out off-line and requires global
knowledge of the network topology.
Notation. N is the set {1, 2, . . . , n}, Z+ is the set of nonnegative
integers, Rn is the n-dimensional Euclidean space, Rn×m is the set
of n×m real matrices, In is the n× n identity matrix, and diag{· · ·}
denotes a block-diagonal matrix. For a matrix S, S ′ denotes its
transpose, S > 0 (S ≥ 0) means that S is symmetric and positive-
definite (positive semi-definite), S−T

:= (S−1)′, and E {·} denotes
mathematical expectation.

2. Problem statement

Consider a dynamic system with the state-space model

x(k + 1) = Ax(k) + Bw(k), x(0) = x0, (1)

where x(k) ∈ Rnx is the state, w(k) ∈ Rnw is the process noise,
and A and B are constant matrices with appropriate dimensions.
Associated to this system, there exists a sensor network consisting
of n sensing nodes given by:

yi(k) = Cix(k) + Diνi(k), i = 1, . . . , n, (2)

where yi(k) ∈ Rni is the ith measurement, νi(k) ∈ Rmi is the ith
measurement noise, and Ci and Di are matrices with appropriate
dimensions. The communication topology of the sensor network is
defined by the adjacency matrix as follows:

Γ = [γij], i, j = 1, . . . , n, (3)

where γij is a known binary variable indicating whether informa-
tion is sent from node j to node i (when γij = 1) or not (when
γij = 0). Also, let γii = 1. Moreover, let the set Ni of the neighbor-
ing nodes of node i, for all i ∈ N , be as below:

Ni :=

j ∈ N : γij ≠ 0


, i ∈ N . (4)

It is assumed that w(k) and νi(l), i = 1, . . . , n, for any k, l ∈

Z+, are uncorrelated zero-mean white sequences with covariance

matrices W and Vi, i = 1, . . . , n, respectively, and that x0 is a
random variable which is uncorrelated with w(k) and νi(k), i =

1, . . . , n, for any k ∈ Z+.
In a centralized state estimation framework, namely when

all measurements are processed together, the minimum variance
state estimator for system (1) corresponds to the centralized
Kalman filter (CKF). This paper is aimed at designing local state
estimators that achieve a performance as close as possible to the
CKF. Attention is focused on designing stationary local filters with
guaranteed convergence and performance. It is assumed that the
sensor nodes may receive the measurement and the state of the
estimator of its neighboring nodes. The structure of the filter at
each node is quite general, in the sense of not necessarily including
a copy of the system dynamics. Specifically, the following network
of state estimators is considered:

ξi(k + 1) =


j∈Ni

Fijξj(k) + Gijyj(k), ξi(0) = 0,

i = 1, . . . , n,

x̂i(k) =


j∈Ni

Hijξj(k), i = 1, . . . , n,
(5)

where ξi(k) ∈ Rnx is the state of the estimator at node i, x̂i(k) ∈ Rnx

is the estimate of x(k) at node i, and Fij,Gij and Hij are matrices of
appropriate dimensions to be designed for all i ∈ N and j ∈ Ni.

Note that the estimator at each node, in addition to its own
measurement, also incorporates both the measurements and the
estimator state vectors of its neighboring nodes. However, when
due to communication constraints it is not possible to transmit
information from some of the neighboring nodes (either estimator
states, measurements or both), the corresponding matrices Fij, Gij
and Hij for these nodes are set to zero. In contrast with most
of the distributed estimators proposed in the literature, the local
estimators in (5) are not constrained to have an observer-type
structure, i.e., the system dynamics plus a correction gain times
the output estimation error. These features allow for achieving
improved performance as will be illustrated by an example
in Section 6. Observe that distributed stationary observer-type
state estimators, including those using consensus and diffusion
strategies are special cases of (5) for particular choices of Fi,j, Gi,j
and Hi,j.

For convenience, (5) is equivalently written in the following
compact form:

ξ(k + 1) = Fξ(k) + Gy(k), ξ(0) = 0,
x̂(k) = Hξ(k), (6)

with ξ ∈ Rnξ , y ∈ Rny and x̂ ∈ Rnξ , nξ = nnx and ny = n1+· · ·+nn,
given by

ξ = [ξ ′

1 . . . ξ ′

n]
′, y = [y′

1 . . . y′

n]
′, x̂ = [x̂′

1 . . . x̂′

n]
′

and F , G, and H are block-matrices with (i, j)-block, i, j ∈ N , as
follows:

[F ]ij = Fij, [G]ij = Gij, [H]ij = Hij : for j ∈ Ni,

[F ]ij = 0, [G]ij = 0, [H]ij = 0 : otherwise.

Letting
ei := x − x̂i, e = [e′

1 . . . e′

n]
′, η = [x′ ξ ′

]
′,w = [w′ v′

]
′, v = [ v′

1 . . . v′

n]
′,

(7)

the dynamics of the overall estimation error, e, is given by
η(k + 1) = Aeη(k) + Bew(k),

e(k) = Ceη(k), (8)
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