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a b s t r a c t

General features of finite-time-stable (FTS) homogeneous differential inclusions (DIs) are investigated in
the context of sliding-mode control (SMC). The continuity features of the settling-time functions of FTS
homogeneous DIs are considered, and the system asymptotic accuracy is calculated in the presence of
disturbances, noises and delays. Performance of output-feedbackmulti-inputmulti-output homogeneous
SMC systems is studied in the presence of relative degree fluctuations. The bifurcation of the kinematic-
car-model relative degree is analyzed as an example.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Conventional sliding mode (SM) control (SMC) (Edwards &
Spurgeon, 1998; Utkin, 1992) is based on keeping σ ≡ 0 for an
appropriate vector output σ called the sliding variable. It results in
possibly dangerous high-frequency switching (chattering) (Boiko
& Fridman, 2005; Fridman, 2003; Utkin, 1992). The relative degree
of the components of σ should be 1, i.e. already σ̇ should contain
controls. Recall that the relative degree (Isidori, 1995) is roughly
the lowest order of the output’s total time derivative containing
controls with non-zero coefficients.

High-order SMs (HOSMs) have overcome the relative degree
restriction (Bartolini, Ferrara, & Usai, 1998; Bartolini, Pisano,
Punta, & Usai, 2003; Boiko & Fridman, 2005; Levant, 1993;
Plestan, Glumineau, & Laghrouche, 2008; Shtessel, Taleb, & Plestan,
2012). Introducing integrators, one also effectively attenuates the
chattering.

The auxiliary dynamics of sliding variables is naturally de-
scribed by differential inclusions (DIs). Finite-time (FT) stabiliza-
tion of such DIs becomes the main SMC task. A control feedback
yielding a FT stable (FTS) homogeneousDI solves the problem (Bac-
ciotti & Rosier, 2005; Bernuau, Efimov, Perruquetti, & Polyakov,
2014; Bhat & Bernstein, 2000; Levant, 2003, 2005a; Orlov, 2005;
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Polyakov & Fridman, 2014). Respectively HOSM controllers im-
pose homogeneous dynamics on the sliding variables. The lacking
derivatives of σ are robustly estimated in FT bymeans of exact ho-
mogeneous differentiators (Levant, 2003). The error dynamics of
a continuous-time system closed by discrete-time dynamics of an
output-feedback controller can be considered as a special homo-
geneous hybrid dynamic system (Goebel, Sanfelice, & Teel, 2012;
Goebel & Teel, 2010).

Hence, the homogeneity theory has become the main tool of
SMC design, whereas the relative degree turns to be its main
parameter. In particular, the theory provides estimations of the
transient times and accuracies in the presence of disturbances
(Bernuau, Efimov, Perruquetti, & Polyakov, 2014; Bhat & Bernstein,
2000; Goebel & Teel, 2010), and the asymptotic system accuracies
in the presence of noises and time delays (Levant, 2005a).

Small dynamic uncertainties can lower the relative degree and
destroy the above control design. Thus, the results (Levant, 2005a)
are to be extended to such disturbed cases. It was proved in
Bernuau, Efimov, and Perruquetti (2014); Bernuau, Efimov, Perru-
quetti, and Polyakov (2014), Goebel and Teel (2010) and Levant
(2009) that in the presence of bounded disturbances homogeneous
FTS DIs feature bounded FT attractors. Unfortunately these results
do not consider time delays and sampling noises, and do not pro-
vide for the corresponding asymptotic accuracy estimations. This
paper extends the results (Levant, 2005a) to disturbed FTS DIs and
fills that gap.

The present paper studies some general features of FTS
homogeneousDIs. In particular it corrects a few inaccuracieswhich
appear in Levant (2005a) with respect to the continuity features
of the settling-time functions, and extends and generalizes the
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accuracy estimations from Levant (2005a) and Livne and Levant
(2014a). The asymptotics of the transient time and the accuracy
of FTS homogeneous DIs in the presence of dynamic disturbances,
sampling noises and time delays are calculated.

The results are applied to the analysis of disturbed multi-
input multi-output (MIMO) systems under homogeneous output-
feedback SMC. A case study considers the bifurcation of the
kinematic-car-model relative degree. The asymptotic accuracies
are calculated theoretically and confirmed by simulation.
Some notation and definitions

Let s ∈ Rm,ϖ ≥ 1. Denote ∥s∥ϖ = (|s1|ϖ + · · · + |sm|
ϖ )1/ϖ ,

∥s∥∞ = max{|s1|, . . . , |sm|}, ∥s∥ = ∥s∥2.
Any binary operation � of two sets is defined as A � B = {a � b |

a ∈ A, b ∈ B}. A vector (point) is considered as a one-element set
in that context. Let s ∈ Rm, A ⊂ Rm. Then the distance is defined,
dist(s, A) = inf{|s−a| | a ∈ A}. A set-valued function F(s) is called
upper-semicontinuous if lims→s̃


sup{dist(z, F(s̃))|z ∈ F(s)}


= 0.

Denote Aε = {s ∈ Rm
| dist(s, A) ≤ ε}. For any function F and

set M denote F(M) =


s∈M F(s).
A scalar function f : D → R, D ⊂ Rm, is called upper

semicontinuous (respectively, lower semicontinuous) at a point s0 ∈

D, if for any ε > 0 there exists δ > 0 such that f (s) ≤ f (s0) + ε
(respectively, f (s) ≥ f (s0)− ε) for all s ∈ D ∩ {s0}δ .

2. Coordinate homogeneity and settling functions

Consider a Filippov DI

ṡ ∈ F(s), s ∈ Rm. (1)

It means that F(s) ⊂ Rm is an upper-semicontinuous non-empty
compact convex set-valued function (Filippov, 1988).

Such DIs feature the existence and extendability of local
solutions, and their continuous dependence on initial conditions
and the graph of the right-hand side (Filippov, 1988). Solutions
of DI (1) are defined as locally absolutely continuous functions
satisfying (1) for almost any t .

Let DI (1) be also homogeneous of the degree q. The lattermeans
(Levant, 2005a) that F(s) = κ−q d−1

κ F(dκ s) for any κ > 0 with the
homogeneity dilation

dκ : (s1, . . . , sm) → (κw1s1, . . . , κwmsm),
w1, w2, . . . , wm > 0.

(2)

Here wi > 0 are called the weights (homogeneity degrees) of
si, deg si = wi. Denote p = −q. The homogeneity of DI (1)
is equivalent to the invariance of (1) with respect to the time-
coordinate transformation

Gκ : (t, s) → (κpt, dκ s). (3)

One can formally define deg t = p.
Recall that a function φ(s) is called homogeneous with the

homogeneity degree q, degφ = q, if the identityφ(s) = κ−qφ(dκ s)
holds for all s and κ > 0. The standard definition (Bacciotti &
Rosier, 2005) of the homogeneity of the differential equation ṡ =

f (s) = (f1(s), . . . , fm(s))T is that deg ṡi = deg si − deg t = deg fi.
Definitions coincide, if the equation ṡ = f (s) is considered as the
DI ṡ ∈ {f (s)}.

A homogeneous norm ∥s∥h is any positive-definite continuous
function of s of the weight 1. It is never smooth at 0, but ∥s∥h =
|s1|ϖ/w1 + · · · + |sm|

ϖ/wm
1/ϖ , ϖ ≥ maxiwi, is 1-smooth at

s ≠ 0.
Note that all homogeneity degrees are simultaneously multi-

plied by λw > 0 as the result of the substitution κ = κ̃λw . In partic-
ular, a non-zero homogeneity degree q = −p can always be scaled
to ±1.

Proposition 1. Let (1) be a Filippov homogeneous DI with the
dilation (2) and the homogeneity transformation (3). Then for any
i = 1, . . . ,m either wi ≥ p, or the ith vector component of the
inclusion is identical zero everywhere except the origin.

Proof. Indeed, let F(s) contain a vector v = (v1, . . . , vm) with
vi ≠ 0. Thus F(dκ s) = κ−pdκF(s) contains the vector κ−pdκv
with its ith component equal to κwi−pvi. In the case wi < p this
component tends to infinity for κ → 0, and, respectively, due to
the upper semicontinuity of F the set F(0) is not bounded. Hence
(1) is not a Filippov DI. �

Obviously, no vector component of an asymptotically stable DI
is identical zero. Thus for such DIswi ≥ p for i = 1, . . . ,m.

DI (1) is called finite-time stable (FTS), if the origin 0 is a
Lyapunov-stable constant solution, and each solution of the DI
stabilizes at 0 in FT.

Proposition 2. Let (1)–(3) define a FTS Filippov homogeneous DI.
Then p > 0, andwi ≥ p for i = 1, . . . ,m.

Proof. Obviously ∀iwi ≥ p. Prove that p > 0.
Choose the sphere S1 = {∥s∥ = 1} and any κ0 ∈ (0, 1).

Obviously, dκ0S1 lies inside the sphere S1. Due to its upper-
semicontinuity the set function F is bounded on each compact,
in particular between S1 and dκ0S1. Thus there exists a number
Tm > 0, such that no trajectory starting on S1 hits dκ0S1 in time
less than Tm. Applying the transformation (3) with the parameter
κk
0 to such trajectories implies that for any integer k no trajectory

starting on dkκ0S1 hits dk+1
κ0

S1 in time less than κkp
0 Tm.

Any stabilizing trajectory starting on S1 hits the manifolds
dκ0S1, d

2
κ0
S1, . . . on its way to 0. Assuming p ≤ 0, get that the

stabilization time is not less than Tm


k κ
kp
0 = ∞. �

It is known that the asymptotic stability of homogeneous DIs with
negative homogeneity degree, i.e. with p > 0, is equivalent to their
FT stability (Bhat & Bernstein, 2000; Levant, 2005a; Orlov, 2005).

Let Φ(s), s ∈ Rm, be the set of all solutions of (1) defined for
t ≥ 0, with the initial value s at the time t = 0.

For any ξ ∈ Φ(s), the functional T0(ξ) = inf{τ ≥ 0 | ∀t ≥

τ , ξ(t) = 0} is called the settling-time of ξ(t). If the set {τ ≥ 0 |

∀t ≥ τ , ξ(t) = 0} is empty then the value T0(ξ) = ∞ is assigned.
Note that due to the FT stability of (1), T0(ξ) is finite, and ξ(t) = 0
for all t ≥ T0(ξ).

Introduce the upper settling-time function T ∗(s) = sup{T0(ξ) |

ξ ∈ Φ(s)}, and the lower settling-time function T∗(s) = inf{T0(ξ) |

ξ ∈ Φ(s)}. Obviously, the functions T ∗(s) and T∗(s) are homoge-
neous of the weight p. Indeed, due to the invariance of (1) with re-
spect to the transformation (3) get T ∗(dκ s) = supξ̂∈Φ(dκ s) T0(ξ̂ ) =

supξ∈Φ(s) κp T0(ξ) = κp T ∗(s). The homogeneity of T∗ is similarly
proved.

It was erroneously stated (Levant, 2005a) that the maximal
convergence time of a FTS homogeneous DI is a continuous
function of initial conditions. The following proposition corrects
the statement.

Proposition 3. Let (1) be a homogeneous FTS Filippov DI with the
homogeneity dilation (2) and transformation (3). Then the following
statements are true.

1. The set {T0(ξ) | ξ ∈ Φ(s)} is compact for any s ∈ Rm. In partic-
ular, T ∗(s) = max{T0(ξ) | ξ ∈ Φ(s)}, T∗(s) = min{T0(ξ) | ξ ∈

Φ(s)}, i.e., both functions are realized on some solutions of (1).
2. The upper settling-time function T ∗(s) is an upper semicontinuous

function, whereas the lower settling-time function T∗(s) is a lower
semicontinuous function.
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