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a b s t r a c t

This paper presents a method to derive componentwise ultimate upper bounds and componentwise
ultimate lower bounds for linear positive systems with time-varying delays and bounded disturbances.
The disturbance vector is assumed to vary within a known interval whose lower bound may be different
from zero. We first derive a sufficient condition for the existence of componentwise ultimate bounds.
This condition is given in terms of the spectral radius of the system matrices which is easy to check and
allows us to compute directly both the smallest componentwise ultimate upper bound and the largest
componentwise ultimate lower bound. Then, by using the comparison method, we extend the obtained
result to a class of nonlinear time-delay systems which has linear positive bounds. Two numerical
examples are given to illustrate the effectiveness of the obtained results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In general, it is hard (sometime impossible) to achieve asymp-
totic stability for dynamical systems perturbed by unknown-but-
bounded disturbances. Instead, the convergence of the system’s
trajectories within a bounded set after a large enough time can
be guaranteed. Such a set is called an ultimate bound set of the
system (Khalil, 2002). The problem of finding the smallest possi-
ble ultimate bound set for perturbed systems has been an impor-
tant topic in control engineering and has attracted considerable
research attention (see, Corless & Leitmann, 1993; Haimovich, Kof-
man, & Seron, 2007; Haimovich & Seron, 2010; Khalil, 2002; Kof-
man, Haimovich, & Seron, 2007 and the references therein).

Recently, there is a growing interest in the problem of finding
ultimate bound sets for perturbed systems with time delays.
For linear time-delay systems whose matrices are constant, a
widely used approach is based on the Lyapunovmethod combining
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with linear matrix inequality techniques. By using this approach,
Fridman and Dambrine (2009), Han, Fridman, and Spurgeon
(2010, 2012), Nam, Pathirana, and Trinh (2013, 2014, 2015a) and
Oucheriah (2006) derived sufficient conditions for the existence
of ellipsoidal ultimate bound sets. Another approach which is
based on the comparison method combining with Metzler matrix
or Schur matrix is also widely used (Haimovich et al., 2007;
Haimovich & Seron, 2010, 2013, 2014; Kofman et al., 2007). To
achieve smaller ultimate bound sets, Haimovich et al. (2007),
Haimovich and Seron (2010, 2013, 2014) and Kofman et al.
(2007) derived ultimate bound for each partial state vector,
i.e. componentwise ultimate bounds. Hence, their ultimate bound
sets are smaller than the ones derived by employing a norm
for bounding the full state vector. Very recently, by estimating
directly the state vector, Hien and Trinh (2014) and Xu and
Ge (2015) derived componentwise ultimate bounds for general
nonlinear time-delay systems. Note that, in all of the above papers,
disturbances are considered under the assumption that their
absolute value varies from zero to an upper bound. In practice,
however, the lower bound of the absolute value of the disturbance
vector may be not necessary to be zero.

Motivated by the above discussion, in this paper, we study
the problem of finding componentwise ultimate bounds for
linear positive systems with time-varying delays and bounded
disturbances. Different from the existing results, the disturbance
vector is assumed to vary within a known vector-valued interval
whose lower bound may be different from zero. By estimating the
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system state, we first derive a sufficient condition for the existence
of both componentwise ultimate upper bound and lower bound.
The upper bound is shown to be smallest and the lower bound
is shown to be largest. Then, based on the comparison method,
we extend the obtained result to nonlinear time-delay systems
which has linear positive bounds. Lastly, two numerical examples
are given to illustrate the obtained results.

2. Notations and problem statement

Notations: N is the set of nonnegative integers; Rn(Rn
0,+,R

n
+
) is n-

dimensional (nonnegative, positive) vector space; For two vectors
x = [x1 x2 · · · xn]T ∈ Rn, y = [y1 y2 · · · yn]T ∈ Rn, two
n × n-matrices A = [aij], B = [bij], notation x ≺ y(≼ y) means
that xi < yi(≤ yi),∀i = 1, . . . , n; A ≺ B(≼ B) means that
aij < bij(≤ bij),∀i, j = 1, . . . , n; A is nonnegative if 0 ≼ A;
ρ(A) = max{|λ| : λ ∈ σ(A)} with σ(A) being the spectrum of A
and |x| := [|x1| |x2| · · · |xn|]T ; For two vectors q1 ≼ q2, [q1, q2] :=

{x ∈ Rn
: q1 ≼ x ≼ q2} is a vector-valued interval; If x(t) is a

vector-valued function then lim supt→∞ x(t) (or lim inft→∞ x(t))
denotes the vector obtained by taking lim supt→∞, (lim inft→∞) of
component of x(t).

Consider the following linear positive system with a time-
varying delay and bounded disturbances
x(t + 1) = A0x(t)+ A1x(t − τ1(t))+ Bω(t), t ∈ N, (1)
x(s) = υ(s), s ∈ {−h,−h + 1, . . . , 0}
where x(t) ∈ Rn

0,+ is the state vector; υ(s) ∈ Rn
0,+, s ∈ {−h,−h+

1, . . . , 0} are initial values; ω(t) ∈ Rk
0,+ is the disturbance vector

varying within a known interval, i.e.,
0 ≼ ω ≼ ω(t) ≼ ω, (2)
ω,ω are known vectors; time-varying delay, τ1(t) ∈ [0, h], is a
given integer-valued function, h is a known integer; A0, A1 and B
are nonnegative matrices.

Let us denote a solution with initial values x(s) = υ(s), s ∈

{−h, . . . , 0} and a disturbance vector ω(t) of system (1) by
x(t, υ, ω). Then, we have definitions of componentwise ultimate
upper bound and lower bound of system (1) as follows:

Definition 1. (i) A nonnegative vector q is called a component-
wise ultimate upper bound of system (1) if for any initial con-
dition υ(s), s ∈ {−h, . . . , 0} and for any disturbance vector
ω(t) satisfying (2), we have

lim sup
t→∞

x(t, υ, ω) ≼ q;

(ii) Similarly, a nonnegative vector q is called a componentwise
ultimate lower bound of system (1) if

lim inf
t→∞

x(t, υ, ω) ≽ q.

Themain objective of this paper is to derive the smallest compo-
nentwise ultimate upper bound q and the largest componentwise
ultimate lower bound q, for system (1).

3. Main result

3.1. Componentwise ultimate bounds for linear positive systems

Let us consider the following two respective linear systems:
z(t + 1) = A0z(t)+ A1z(t − τ1(t))+ Bω, t ∈ N (3)
z(s) = ψ(s), s ∈ {−h,−h + 1, . . . , 0},

g(t + 1) = A0g(t)+ A1g(t − τ1(t))+ Bω, t ∈ N (4)
g(s) = φ(s), s ∈ {−h,−h + 1, . . . , 0},
where ψ(s), φ(s) ∈ Rn

0,+, s ∈ {−h, . . . , 0}. The following lemmas
are needed for our development.

Lemma 2. The above two linear time-delay systems are nonnegative.

Proof. The proof is obvious. �

Based on Lemma 2, we obtain the following results:

Lemma 3. (i) If υ(s) ≼ ψ(s),∀s ∈ {−h, . . . , 0} then we have
x(t, υ, ω) ≼ z(t, ψ),∀t ∈ N,

(ii) If ψ1(s) ≼ ψ2(s),∀s ∈ {−h, . . . , 0} then we have z(t, ψ1) ≼

z(t, ψ2),∀t ∈ N,
(iii) If φ(s) ≼ υ(s),∀s ∈ {−h, . . . , 0} then we have g(t, φ) ≼

x(t, υ, ω), ∀t ∈ N.

Proof. (i) Denote e(t) = z(t)− x(t), ε(t) = ω−ω(t) and consider
the following system

e(t + 1) = A0e(t)+ A1e(t − τ1(t))+ Bε(t), t ∈ N (5)
e(s) = ψ(s)− υ(s), s ∈ {−h,−h + 1, . . . , 0}.

By Lemma 2, we have e(t, ψ−υ, ε) ≽ 0,∀t ∈ N. This implies that
x(t, υ, ω) ≼ z(t, ψ),∀t ∈ N.

(ii) and (iii) Similarly, we also have (ii) and (iii). The proof of
Lemma 3 is completed. �

Lemma 4 (Berman & Plemmons, 1994). Let M ∈ Rn×n be a
nonnegative matrix. Then the following statements are equivalent:
(i) ρ(M) < 1; (ii) (I − M)−1

≽ 0; (iii) ∃p ≻ 0, (M − I)p ≺ 0.

We are now in a position to introduce the main result in the
form of the following theorem.

Theorem 5. If ρ(A0 + A1) < 1 then

(i) vector q = (I − A0 − A1)
−1Bω is the smallest componentwise

ultimate upper bound of system (1); and
(ii) vector q = (I − A0 − A1)

−1Bω is the largest componentwise
ultimate lower bound of system (1).

Proof. (i) Since ρ(A0 + A1) < 1, by Lemma 4, q exists
and is nonnegative. First, we prove that, for any nonnegative
initial condition ψ(.), lim supt→∞ z(t, ψ) ≼ q. Indeed, for any
nonnegative initial condition ψ(s) ≽ 0, s ∈ {−h, . . . , 0}, by
Lemma 4, there exists a positive vector η such that (A0 + A1)η ≼ η
and ψ(s) ≼ q + η,∀s ∈ {−h, . . . , 0}. Set a function ψη(s) =

q + η, s ∈ {−h, . . . , 0}, then by Lemma 3, we have

z(t, ψ) ≼ z(t, ψη), ∀t ∈ N. (6)

For every s ∈ N, we define the set

Is = {s(h + 1)+ i, i = 1, 2, . . . , h + 1}. (7)

We will prove that

z(t, ψη) ≼ q + (A0 + A1)
sη, ∀s ∈ N, ∀t ∈ Is. (8)

Indeed, for s = 0 and t = 1, by using the assumption ρ(A0 +A1) <
1 and q = (I − A0 − A1)

−1Bω, we have

z(1, ψη) = A0z(0, ψη)+ A1z(−τ1(0), ψη)+ Bω
≼ A0(q + η)+ A1(q + η)+ Bω
= (A0 + A1)q + Bω + (A0 + A1)η

= q + (A0 + A1)η

≼ q + η. (9)

Similarly, we also have,

z(t, ψη) ≼ q + (A0 + A1)η

≼ q + η, ∀t ∈ {2, . . . , h + 1}. (10)
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