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a b s t r a c t

This paper presents the multivariable extension of the feedback particle filter (FPF) algorithm for the
nonlinear filtering problem in continuous-time. The FPF is a control-oriented approach to particle filtering.
The approach does not require importance sampling or resampling and offers significant variance
improvements; in particular, the algorithm can be applied to systems that are not stable. This paper
describes new representations and algorithms for the FPF in the general multivariable nonlinear non-
Gaussian setting. Theory surrounding the FPF is improved: Exactness of the FPF is established in the
general setting, as well as well-posedness of the associated boundary value problem to obtain the filter
gain. A Galerkin finite-element algorithm is proposed for approximation of the gain. Its performance is
illustrated in numerical experiments.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent work, we introduced a new feedback control-based
formulation of the particle filter for the nonlinear filtering prob-
lem (Yang et al., 2012; Yang, Mehta, & Meyn, 2011a,b, 2013). The
resulting filter is referred to as the feedback particle filter. In our
prior journal article (Yang et al., 2013), the filter was described
for the scalar case, where the signal and observation processes are
both real-valued. The aim of this paper is to generalize the scalar
results of our earlier paper to the multivariable filtering problem:

dXt = a(Xt) dt + σ(Xt) dBt , (1a)
dZt = h(Xt) dt + dWt , (1b)

where Xt ∈ Rd is the state at time t , Zt ∈ Rm is the observation vec-
tor, and {Bt}, {Wt} are twomutually independentWiener processes
taking values in Rd and Rm. The mappings a(·) : Rd

→ Rd, h(·) :

Rd
→ Rm and σ(·) : Rd

→ Rd×d are C1 functions. The covari-
ancematrix of the observation noise {Wt} is assumed to be positive
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definite. The function h is a column vector whose jth coordinate is
denoted as hj (i.e., h = (h1, h2, . . . , hm)

T ). By scaling, we assume
without loss of generality that the covariance matrices associated
with {Bt}, {Wt} are identity matrices. Unless otherwise noted, the
stochastic differential equations (SDEs) are expressed in Itô form.

The objective of filtering is to estimate the posterior distribution
of Xt given the time history of observations Zt := σ(Zs : 0 ≤ s ≤

t). The density of the posterior distribution is denoted by p∗, so that
for any measurable set A ⊂ Rd,
x∈A

p∗(x, t) dx = P{Xt ∈ A | Zt}.

The filter is infinite-dimensional since it defines the evolution,
in the space of probability measures, of {p∗( · , t) : t ≥ 0}. If
a( · ), h( · ) are linear functions, the solution is given by the finite-
dimensional Kalman–Bucy filter. The article (Budhiraja, Chen, &
Lee, 2007) surveys numerical methods to approximate the nonlin-
ear filter. One approach described in this survey is particle filtering.

The particle filter is a simulation-based algorithm to approxi-
mate the filtering task (Doucet, de Freitas, &Gordon, 2001). The key
step is the construction of N stochastic processes {X i

t : 1 ≤ i ≤ N}:
The value X i

t ∈ Rd is the state for the ith particle at time t . For each
time t , the empirical distribution formed by, the particle popula-
tion is used to approximate the posterior distribution. Recall that
this is defined for any measurable set A ⊂ Rd by,

p(N)(A, t) =
1
N

N
i=1

1{X i
t ∈ A}.
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A common approach in particle filtering is called sequential impor-
tance sampling, where particles are generated according to their
importance weight at every time step (Bain & Crisan, 2010; Doucet
et al., 2001).

In our earlier papers (Yang et al., 2011a,b, 2013), an alternative
feedback control-based approach to the construction of a particle
filter was introduced. The resulting particle filter, referred to as the
feedback particle filter (FPF), was described for the scalar filtering
problem (where d = m = 1). The main result of this paper is to
present the FPF for themultivariable filtering problem (1a)–(1b). In
the following, this algorithm is described followed by a statement
of the original contributions of this paper and comparison to
relevant literature.

The feedback particle filter is a controlled system. The dynamics
of the ith particle have the following gain feedback form,

dX i
t = a(X i

t) dt + σ(X i
t) dB

i
t + K(X i

t , t) dI
i
t +Ω(X i

t , t) dt  
dU i

t

, (2)

where {Bi
t} are mutually independent standard Wiener processes,

Iit is similar to the innovation process that appears in the nonlinear
filter,

dI it := dZt −
1
2
(h(X i

t)+ ĥ) dt, (3)

where ĥ := E[h(X i
t)|Zt ]. In a numerical implementation, we ap-

proximate ĥ ≈
1
N

N
i=1 h(X

i
t) =: ĥ(N).

The gain function K is obtained by solving a weighted Poisson
equation: For j = 1, 2, . . . ,m, the function φj is a solution to the
second-order boundary value problem (BVP),

BVP
∇ · (p(x, t)∇φj(x, t)) = −(hj(x)− ĥj)p(x, t),

φj(x, t)p(x, t) dx = 0 (normalization),
(4)

for all x ∈ Rd where ∇ and ∇· denote the gradient and the diver-
gence operators, respectively, and p denotes the conditional den-
sity of X i

t given Zt , and ĥj := E[hj(X i
t)|Zt ]. Although this paper is

limited to Rd, for domains with boundary, the BVP is accompanied
by a Neumann boundary condition,

∇φ(x, t) · n̂(x) = 0,

for all x on the boundary of the domain where n̂(x) is a unit normal
vector at the boundary point x.

In terms of BVP solution, the gain function is given by

[K]lj =
∂φj

∂xl
. (5)

Note that the gain function K is matrix-valued (with dimension
d × m) and it needs to be obtained for each value of time t . Also
recall that h is a column vector with m entries.

Finally,Ω = (Ω1,Ω2, . . . ,Ωd)
T is the Wong–Zakai correction

term:

Ωl(x, t) :=
1
2

d
k=1

m
s=1

Kks(x, t)
∂Kls

∂xk
(x, t). (6)

The controlled system (2)–(6) is called the multivariable feedback
particle filter.

The inspiration for controlling a single particle – via the control
input U i

t in (2) – comes from the mean-field game formalism;
cf., Huang, Caines, andMalhame (2007) and Yin, Mehta, Meyn, and
Shanbhag (2010). With no control input (U i

t = 0), the particle
system (2) implements a Monte Carlo propagation of the (un-
conditioned) probability distribution for (1a). One interpretation
of the control input U i

t is that it implements the ‘Bayesian update

step’ to account for conditioning due to observations (1b). The
gain times error structure is reminiscent of the Bayesian update
formula in the Kalman filter (see also Remark 1). Structurally,
such an update procedure is very different from the importance
sampling based implementation of the Bayes rule in conventional
particle filters. While the FPF is naturally a continuous-time
algorithm, an importance sampling-based procedure typically
requires discretization of time; cf., Bain and Crisan (2010). In
discrete-time, approximations of the posterior distribution are
typically used as importance densities.

The contributions of this paper are as follows:
• Exactness. The feedback particle filter (2) is shown to be exact,
given an exact initialization p( · , 0) = p∗( · , 0). Consequently, if
the initial conditions {X i

0}
N
i=1 are drawn from the initial density

p∗( · , 0) of X0, then, as N → ∞, the empirical distribution of
the particle system approximates the posterior density p∗( · , t) for
each t .
• Well-posedness. A weak formulation of the BVP (4) is intro-
duced, and used to prove an existence–uniqueness result for φj in
a suitable function space. Certain a priori bounds are derived for
the gain function to show that the resulting control input in (2) is
admissible. (That is, the filter (2) is well-posed in the Itô sense.)
• Numerical algorithms. Based on the weak formulation, a
Galerkin finite-element algorithm is proposed for approximation
of the gain function K(x, t). The algorithm is completely adapted to
data (that is, it does not require an explicit approximation of p(x, t)
or computation of derivatives). Certain closed-formexpressions for
the gain function are derived in a few special cases. The conclusions
are illustrated with numerical examples.

In recent years, there has been a burgeoning interest in ap-
plication of ideas and techniques from statistical mechanics to
nonlinear estimation and control theory. Although some of these
applications are classical (see e.g. DelMoral, 2013, 2004; DelMoral,
Patras, & Rubenthaler, 2011; Del Moral & Rio, 2011), the recent im-
petus comes from explosive interest in mean-field games, start-
ing with the two papers from 2007: Lasry and Lions paper titled
‘‘Mean-field games’’ (Lasry & Lions, 2007) and a paper in IEEE TAC
by Huang et al. (2007). These papers spurred interest in analysis
and synthesis of controlled interacting particle systems.

For the continuous-time filtering problem, an approximate par-
ticle filtering algorithm appears in the 2009 paper of Crisan and
Xiong (2009). In the 2003 paper of Mitter, an optimal control prob-
lem for particle filtering is formulated based on duality (Mitter &
Newton, 2003). A comparison between the algorithms proposed in
these papers and the feedback particle filter appears in Yang et al.
(2013). Certain mean-field game inspired approximate algorithms
for nonlinear estimation appear in Fallah, Malhamé, andMartinelli
(2013a,b), Pequito, Aguiar, Sinopoli, andGomes (2011). In discrete-
time settings, Daum and Huang have introduced the particle flow
filter algorithm (Daum & Huang, 2010). A detailed comparison of
the feedback particle filter to Daum’s particle flow filter appears
in Yang, Blom, and Mehta (2014). There are by now a growing list
of papers on application of such controlled algorithms to: physical
activity recognition (Tilton, Hsiao-Wecksler, &Mehta, 2012; Tilton,
Mehta, & Meyn, 2013), estimation of soil parameters in dredg-
ing applications (Stano, Tilton, & Babuska, 2014), estimation and
control in the presence of communication channels (Ma & Cole-
man, 2011), target state estimation (Daum & Huang, 2010; Tilton,
Ghiotto, & Mehta, 2013), satellite tracking (Berntorp, 2015) and
weather forecasting (Reich, 2011).

The outline of the remaining part of this paper is as follows.
The nonlinear filter is introduced and shown to be exact in Sec-
tion 2. Theweak formulation of the BVP appears in Section 3where
well-posedness results are derived and the numerical Galerkin al-
gorithm is described. A self-contained summary of the finite-N FPF
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