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a b s t r a c t

Stable estimation of rigid body pose and velocities from noisy measurements, without any knowledge of
the dynamicsmodel, is treated using the Lagrange–d’Alembert principle fromvariationalmechanics.With
body-fixed vision and inertial sensor measurements, a Lagrangian is obtained as the difference between
a kinetic energy-like term that is quadratic in velocity estimation error and the sum of two artificial
potential functions; one obtained from a generalization of Wahba’s function for attitude estimation and
another which is quadratic in the position estimate error. An additional dissipation term that is linear
in the velocity estimation error is introduced, and the Lagrange–d’Alembert principle is applied to the
Lagrangianwith this dissipation. A Lyapunov analysis shows that the state estimation scheme so obtained
provides stable asymptotic convergence of state estimates to actual states in the absence of measurement
noise, with an almost global domain of attraction. This estimation scheme is discretized for computer
implementation using discrete variational mechanics, as a first order Lie group variational integrator.
The discrete estimation scheme can also estimate velocities from such onboard sensor measurements.
Moreover, all states can be estimated during time periods when measurements of only two inertial
vectors, the angular velocity vector, and one feature point position vector are available in body frame. In
the presence of bounded measurement noise in the vector measurements, numerical simulations show
that the estimated states converge to a bounded neighborhood of the true states.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of coupled translational and rotational motion is
indispensable for operations of spacecraft, unmanned aerial and
underwater vehicles. Autonomous state estimation of a rigid body
based on inertial vector measurement and visual feedback from
stationary landmarks (Karpenko, Konovalenko, Miller, Miller, &
Nikolaev, 2015;Miller &Miller, 2015), in the absence of a dynamics
model for the rigid body, is analyzed here. The estimation scheme
proposed here can also be applied to relative state estimation with
respect to moving objects (Misra, Izadi, Sanyal, & Scheeres, 2015).
This estimation scheme can enhance the autonomy and reliability
of unmanned vehicles in uncertain GPS-denied environments.
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Salient features of this estimation scheme are (1) use of onboard
optical and inertial sensors, with or without rate gyros, for
autonomous navigation; (2) robustness to uncertainties and lack
of knowledge of dynamics; (3) low computational complexity for
easy implementationwith onboard processors; (4) proven stability
with large domain of attraction for state estimation errors; and
(5) versatile enough to estimate motion with respect to stationary
aswell asmoving objects. Robust state estimation of rigid bodies in
the absence of complete knowledge of their dynamics, is required
for their safe, reliable, and autonomous operations in poorly known
conditions. In practice, the dynamics of a vehicle may not be
perfectly known, especially when the vehicle is under the action
of poorly known forces and moments. The scheme proposed here
has a single, stable algorithm for the coupled translational and
rotational motion of rigid bodies using onboard optical and inertial
sensors. This avoids the need for measurements from external
sources, likeGPS,whichmaynot be available in indoor, underwater
or cluttered environments (Amelin & Miller, 2014; Leishman,
McLain, & Beard, 2014; Miller & Miller, 2014).

Attitude estimators using unit quaternions for attitude rep-
resentation may be unstable in the sense of Lyapunov, unless
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they identify antipodal quaternions with a single attitude. This
is also the case for attitude control schemes based on continu-
ous feedback of unit quaternions, as shown in Bayadi and Ba-
navar (2014); Chaturvedi, Sanyal, andMcClamroch (2011); Sanyal,
Fosbury, Chaturvedi, and Bernstein (2009). One adverse con-
sequence of these unstable estimation and control schemes is
that they end up taking longer to converge compared with sta-
ble schemes under similar initial conditions and initial tran-
sient behavior. Continuous-time attitude observers and filtering
schemes on SO(3) and SE(3) have been reported in, e.g., Bonnabel,
Martin, and Rouchon (2009); Khosravian, Trumpf, Mahony, and
Hamel (2015); Khosravian, Trumpf, Mahony, and Lageman (2015);
Mahony, Hamel, and Pflimlin (2008); Maithripala, Berg, and
Dayawansa (2004); Markley (2006); Rehbinder and Ghosh (2003);
Sanyal, Lee, Leok, and McClamroch (2008); Vasconcelos, Cunha,
Silvestre, and Oliveira (2010); Vasconcelos, Silvestre, and Oliveira
(2008), including recent stochastic filtering approaches (Barrau &
Bonnabel, 2015). These estimators do not suffer from kinematic
singularities like estimators using coordinate descriptions of atti-
tude, and they do not suffer fromunwinding as they do not use unit
quaternions. The maximum likelihood (minimum energy) filter-
ing method of Mortensen (1968) was recently applied to attitude
estimation, resulting in a nonlinear attitude estimation scheme
that seeks to minimize the stored ‘‘energy’’ in measurement er-
rors (Aguiar & Hespanha, 2006; Zamani, 2013; Zamani, Trumpf,
& Mahony, 2013). This scheme is obtained by applying Hamil-
ton–Jacobi–Bellman (HJB) theory (Kirk, 1971) to the state space of
attitudemotion (Zamani, 2013). Since the HJB equation can only be
approximately solved with increasingly unwieldy expressions for
higher order approximations, the resulting filter is only ‘‘near opti-
mal’’ up to second order. Unlike approximate or ‘‘near optimal’’ fil-
tering schemes that are not provably stable, the estimation scheme
obtained here can be solved exactly and is almost globally asymp-
totically stable. Moreover, unlike filters based on Kalman filtering,
the estimator proposed here does not presume any knowledge of
the statistics of the initial state estimate or the sensor noise. Indeed,
for vector measurements using optical sensors with limited field-
of-view, the probability distribution of measurement noise needs
to have compact support, unlike additive Gaussian noise processes
that are commonly used.

The variational attitude estimator recently appeared in Izadi
and Sanyal (2014); Izadi, Sanyal, Barany, and Viswanathan (2015);
Izadi, Sanyal, Samiei, and Viswanathan (2015), where it was
shown to be almost globally asymptotically stable. Advantages
of this scheme over some commonly used competing schemes
are reported in Izadi, Samiei, Sanyal, and Kumar (2015). This
paper extends the variational estimation framework to coupled
rotational (attitude) and translational motion, as exhibited by
maneuvering vehicles like small UAVs. In such applications,
designing separate state estimators for the translational and
rotational motions may not be effective and may lead to poor
navigation. For navigation and tracking the motion of such
vehicles, the approach proposed here for robust and stable
estimation of the coupled translational and rotational motion will
be more effective than de-coupled estimation of translational
and rotational motion states. Moreover, like other vision-inertial
navigation schemes (Shen, Mulgaonkar, Michael, & Kumar, 2013;
Shen, Mulgaonkar, Michael, & Kumar, 2013), the estimation
schemeproposed here does not rely onGPS. However, unlikemany
other vision-inertial estimation schemes, the estimation scheme
proposed here can be implemented without any direct velocity
measurements. Since rate gyros are usually corrupted by high
noise content and bias (Goodarzi, Lee, & Lee, 2013), such a velocity
measurement-free scheme can result in fault tolerance in the case
of faults with rate gyros. Additionally, this estimation scheme
can be extended to relative pose estimation between vehicles

from optical measurements, without direct communications or
measurements of relative velocities (Misra et al., 2015).

The contents of this article are organized as follows. In
Section 2, the problem of motion estimation of a rigid body
using onboard optical and inertial sensors and the measurement
model is introduced. The rigid body states are related to
these measurements. Section 3 introduces artificial energy terms
representing the measurement residuals corresponding to the
rigid body state estimates. The Lagrange–d’Alembert principle
is applied to the Lagrangian constructed from these energy
terms with a Rayleigh dissipation term linear in the velocity
measurement residual, to give the continuous time state estimator.
It is shown that, in the absence of measurement noise, state
estimates converge to actual states with asymptotic stability, and
the domain of attraction is an open dense subset of the state space.
Section 4 provides particular versions of this estimation scheme for
the cases when direct velocitymeasurements are not available and
when only angular velocity is directly measured. In Section 5, the
variational pose estimator is discretized as a Lie group variational
integrator, by applying the discrete Lagrange–d’Alembert principle
to discretizations of the Lagrangian and the dissipation term. This
estimator is simulated numerically in Section 6, for two cases:
the case where at least three beacons are measured at each
time instant; and the under-determined case, where occasionally
less than three beacons are observed. For these simulations, true
states of an aerial vehicle are generated using a given dynamics
model. Optical/inertial measurements are generated, assuming
bounded noise in sensor readings. Using these measurements,
state estimates are shown to converge to a neighborhood of
actual states, for both cases simulated. Finally, Section 7 lists the
contributions andpossible future extensions of thework presented
in this paper.

2. Navigation using optical and inertial sensors

Consider a rigid body in spatial (rotational and translational)
motion. Onboard estimation of the pose involves assigning a
coordinate frame fixed to the vehicle body, and another coordinate
frame fixed in space that serves as the inertial frame. Let O denote
the observed environment and S denote the body. Let S denote a
coordinate frame fixed to S and O be a coordinate frame fixed to
O, as shown in Fig. 1. Let R ∈ SO(3) denote the rotation matrix
from frame S to frame O and b denote the position of origin of S
expressed in frame O. The pose (transformation) from body fixed
frame S to inertial frame O is then given by

g =


R b
0 1


∈ SE(3). (1)

Consider vectors known in the inertial frame O and measured by
inertial sensors in the vehicle-fixed frame S; let β be the number
of such vectors. In addition, consider position vectors of a few
stationary points in the inertial frame O measured by optical
sensors in the vehicle-fixed frame S. Velocities of the vehicle may
be directly measured or can be estimated by linear filtering of the
optical position vector measurements (Izadi et al., 2015). Assume
that these optical measurements are available for j points at time
t , whose positions are known in frame O as pj, j ∈ I(t), where
I(t) denotes the index set of beacons observed at time t . Note
that the observed stationary beacons or landmarks may vary over
timedue to the vehicle’smotion. These points generate


j
2


unique

relative position vectors, which are the vectors connecting any
two of these landmarks. When two or more position vectors are
optically measured, the number of vector measurements that can
be used to estimate attitude is


j
2


+ β . This number needs to be
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