
Accepted Manuscript

Impact analysis of data placement strategies on query efforts in distributed
RDF stores

Daniel Janke, Steffen Staab, Matthias Thimm

PII: S1570-8268(18)30009-X
DOI: https://doi.org/10.1016/j.websem.2018.02.002
Reference: WEBSEM 456

To appear in: Web Semantics: Science, Services and Agents on
the World Wide Web

Received date : 13 June 2017
Revised date : 18 December 2017
Accepted date : 15 February 2018

Please cite this article as: D. Janke, S. Staab, M. Thimm, Impact analysis of data placement
strategies on query efforts in distributed RDF stores, Web Semantics: Science, Services and Agents
on the World Wide Web (2018), https://doi.org/10.1016/j.websem.2018.02.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.websem.2018.02.002


Impact Analysis of Data Placement Strategies on Query Efforts in Distributed
RDF StoresI

Daniel Jankea,∗, Steffen Staaba,b,∗, Matthias Thimma,∗

aUniversität Koblenz-Landau, Institute for Web Science and Technologies, Universitätsstr. 1, 56070 Koblenz, Germany
bUniversity of Southampton, Web and Internet Science Group, Building 32, Highfield Campus, SO17 1BJ Southampton, United Kingdom

Abstract

In the last years, scalable RDF stores in the cloud have been developed, where graph data is distributed over compute
and storage nodes for scaling efforts of query processing and memory needs. One main challenge in these RDF stores
is the data placement strategy that can be formalized in terms of graph covers. These graph covers determine whether
(a) the triples distribution is well-balanced over all storage nodes (storage balance) (b) different query results may
be computed on several compute nodes in parallel (vertical parallelization) and (c) individual query results can be
produced only from triples assigned to few — ideally one — storage node (horizontal containment). We analyse
the impact of three most commonly used graph cover strategies in these terms and found out that balancing query
workload reduces the query execution time more than reducing data transfer over network. To this end, we present
our novel benchmark and open source evaluation platform Koral.

Keywords: Distributed RDF stores, graph partitioning, benchmark

1. Introduction

In the last years, the requirement for RDF stores that can
cope with several trillions of triples has emerged. For
instance, the number of Schema.org-based facts that are
extracted out of the Web have reached the size of three
trillions [2]. Another example is the European Bioinfor-
matics Institute (EMBL-EBI) that would like to convert
its datasets into RDF resulting in a graph consisting of
several trillions of triples. To date no such scalable RDF
store exists and the current EBI RDF Platform can han-
dle only 10 billion triples [3].

We pursue the development of a scalable RDF store in
the cloud, where graph data is distributed over compute
and storage nodes for scaling efforts of query processing
and memory needs. The main challenges to be investi-
gated for such development are: (i) strategies for data
placement over compute and storage nodes, (ii) strate-
gies for distributed query processing, and (iii) strategies
for handling failure of compute and storage nodes. In

IThis paper extends the 6 page workshop paper [1].
∗Corresponding author
Email addresses: danijank@uni-koblenz.de (Daniel Janke),

staab@uni-koblenz.de (Steffen Staab),
thimm@uni-koblenz.de (Matthias Thimm)

this paper, we focus on comparing the performance of
data placement strategies.

Strategies for data placement may be formalized in
terms of graph covers. Each compute and storage node
hosts a graph chunk. Each triple is assigned to (at least)
one graph chunk and the union of all graph chunks de-
fine a (possibly redundant) graph cover. When a query is
requested to an RDF store in the cloud, the query is dis-
tributed over the different compute and storage nodes.
Each node applies the query operators assigned to it on
its local data. If the query requires the combination of
data from different chunks, the required information has
to be transferred between compute nodes.

One graph cover strategy commonly used is the hash
cover that assigns triples to compute and storage nodes
according to the hash value of, e. g., their subject (e. g.,
used by Virtuoso Clustered Edition [4], YARS2 [5, 6],
Clustered TDB [7] and Trinity.RDF [8]). In order to
reduce the number of transferred intermediate results,
hierarchical hash has been proposed as an extension of
the hash cover strategy that computes the hash only on
IRI prefixes [9]. Another commonly used graph cover
strategy is the minimal edge-cut cover that assigns ver-
tices to similarly-sized partitions in a way that the num-
ber of edges connecting vertices assigned to different
partitions is minimised (e. g., used by [10–12]). Fur-

Preprint submitted to Elsevier December 15, 2017

*Manuscript
Click here to view linked References



Download English Version:

https://daneshyari.com/en/article/6950434

Download Persian Version:

https://daneshyari.com/article/6950434

Daneshyari.com

https://daneshyari.com/en/article/6950434
https://daneshyari.com/article/6950434
https://daneshyari.com

