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a b s t r a c t

Source identification problems in a system governed by Euler–Bernoulli beam equation ρ(x)utt +

(r(x)uxx)xx = F(x)H(t), (x, t) ∈ (0, l) × (0, T ), from available boundary observation (measured data),
namely, from measured slope θ(t) := ux(0, t) at x = 0, are considered. We propose a new approach
to identifying the unknown temporal (H(t)) and spatial (F(x)) loads. This novel approach is based on
weak solution theory for PDEs and quasi-solution method for inverse problems combined with the
adjoint method. It allows to construct not only a mathematical theory of inverse source problems for
Euler–Bernoulli beam, but also an effective numerical algorithm for reconstruction of unknown loads.
Introducing the input–output operators (ΦH)(t) := ux(0, t;H) and (Ψ F)(t) := ux(0, t; F), t ∈ (0, T ),
we show that both operators are compact. Based on this result and general regularization theory, we
prove an existence of unique solutions of the regularized normal equations (Φ∗Φ + αI)Hα = Φ∗θ and
(Ψ ∗Ψ + αI)Fα = Ψ ∗θ . Then we develop the adjoint problem approach to prove Fréchet differentiability
of the corresponding cost functionals and Lipschitz continuity of the Fréchet gradients. Derived explicit
gradient formulas via the adjoint problem solution and known load, allow use of gradient type convergent
iterative algorithms. Results of numerical simulations for benchmark problems illustrate robustness and
high accuracy of the algorithm based on the proposed approach.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The beam is one of the fundamental elements of an engineering
structure. Vibration problems related to the static and dynamic
response of beams have huge applications in building, mechanical
and aircraft engineering, in earth sciences and engineering. The
vibration problems have been studied since end of the 18th
century, beginning from the work of Aitken (1878). We refer
to Gladwell (2004) and Morassi (2007) and references therein.
For other engineering applications, including use of waveguides
with different mechanical and geometric properties and also
an adaptive control strategy to control the performance of tall
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buildings under seismic loads, we refer to Bartoli, Marzani, di
Scalea, and Viola (2006), Hurlebaus and Gaul (2006) and Mi,
Michaels, and Michaels (2006) and references therein.

The most commonly used beam models are based on the clas-
sical Euler–Bernoulli beam theory, which is regarded as the basic
model in all the above mentioned scientific fields. For non-
homogeneous dynamic Euler–Bernoulli beam, vibration is gov-
erned by the following equation: ρ(x)utt + (r(x)uxx)xx = F(x)H(t).
Here u(x, t) is the displacement function, depending on the space
x ∈ (0, l) and time t ∈ (0, T ) variables, F(x) and H(t) are the spa-
tial and temporal load distributions. Further, r(x) = EI(x), E > 0
is the elasticity modulus, I(x) > 0 is the moment of inertia of
the cross-section, ρ(x) is the mass density of the beam. In con-
trol theory of PDEs, the parameter identifiability for distributed
parameter systems governed by Euler–Bernoulli equation has also
attracted a great deal of attention Chang and Guo (2007), Guo
(2002), Krstic, Guo, Balogh, and Smyshlyaev (2008), Krstic and
Smyshlyaev (2008), Lagnese (1991) and Liu (2012). In this the-
ory, the determination of physical parameters based on additional
boundary observation (or measured data) is referred to as an iden-
tification problem. Since parameter identification problems are a
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subclass of inverse problems, these problems are studied also in
inverse problems theory and applications. From the point of view
of methods/approaches used, the studies on the parameter identi-
fiability for Euler–Bernoulli equation can be broadly divided into
two categories: methods based on spectral theory and methods
based on observations, i.e. input–output mappings. In the pioneer-
ing studies these problems have been studied using the first cat-
egory of methods, as inverse spectral problems (Barcilon, 1986;
Gladwell, 1986; McLaughlin, 1984). The main effort in all these
works was determination of physical parameters of beams from
the spectral data. However, in practice, it is difficult to acquire
spectral data, as a measured output data.

An identification of variable spatial coefficients in the Eu-
ler–Bernoulli equation from boundary input and observations,
i.e. based on the second category of methods, has been consid-
ered in Chang and Guo (2007), Lesnic and Hasanov (2008) and
Lesnic, Elliott, and Ingham (1999). In particular, it is proved in
Chang and Guo (2007) that the unknown coefficients ρ(x) and
r(x) can be uniquely determined by the given boundary input
g(t) := ((r(x)uxx(x, t))x)x=l and the boundary observations u(l, t)
and ux(l, t), available for all t ∈ (0, T ). More precisely, an equiv-
alence of two identification problems: the problem of identify-
ing the unknown coefficients ρ(x) and r(x) from the spectral data
{ωn, φn(l), φ′

n(l)}
∞

n=1 and the problem of identifying these coeffi-
cients from the boundary measured (input–output) data g(t) →

u(l, t) and g(t) → ux(l, t), is proved. On one hand this fundamen-
tal result is to bridge a gap between two abovementioned category
of methods. On the other hand, this result shows that it is possible
to determine uniquely the unknown coefficients from most feasi-
ble and available boundary observations.

While the study of coefficient identification problems is enough
comprehensive, to our best knowledge, only few results are known
for source identification problems related to Euler–Bernoulli equa-
tion with boundary/final observations (Hasanov, 2009; Hasanov
& Baysal, 2015; Kawano, 2014; Liu, 2012; Nicaise & Zair, 2004).
Specifically, two types of boundary observations are used in
Nicaise and Zair (2004) for space-wise dependent source identi-
fication problems related to the constant coefficient dynamic Eu-
ler–Bernoulli equation utt + uxxxx = λ(t)a(x), with special form
of the unknown spatial load a(x) =

K
k=1 αkδ(x − ξk) and with

given smooth temporal load λ ∈ C1([0, T ]). In the first identifi-
cation problem, the authors proved that the unknown spatial load
a(x) can be uniquely determined from the boundary observation
uxx(0, t), t ∈ (0, T ), i.e. measured value of curvature. In the sec-
ond identification problem, taking the hinged–hinged boundary
conditions u(x, t) = uxx(x, t) = 0, x ∈ {0, l}, in the forward (di-
rect) problem, it is proved that the unknown spatial load can be
determined uniquely from the boundary observation ux(0, t), t ∈

(0, T ), i.e. measured value of slope at x = 0. This source identifica-
tion problem has been then considered in Kawano (2014) for more
general Euler–Bernoulli equation wtt + (µ/ρ)wt + (EI/ρ)uxxxx −

(Ttr/ρ)uxx = h(x, t), which includes the damping coefficient µ ≥

0 and the traction force Ttr ≥ 0 along the beam. Moreover, it
is assumed that the loading is asynchronous and has the form
h(x, t) =

K
n=1 gn(t)fn(x), where fn ∈ H−2, which permits one

to consider also continuous beams with K > 1 internal supports.
Different fromNicaise and Zair (2004), in Kawano (2014)more spe-
cific, interior observations are used as a measured output data for
determination of the unknown functions fn(x), n = 1, K . An effec-
tive combination of the Lie-group adaptive method and the differ-
ential quadrature method is proposed in Liu (2012) for numerical
recovering an unknown space and time dependent load in a con-
stant coefficient Euler–Bernoulli beam equation.

For the variable coefficient Euler–Bernoulli equation ρ(x)utt +

(r(x)uxx)xx = F(x, t), identification problems with final observa-
tions uT (x) := u(x, T ) (final displacement) and νT (x) := ut(x, T )

(final speed) has been formulated in Hasanov (2009). Using the
least squares (or quasi-solution) method combined with the ad-
joint problem approach, here explicit formulas for the Fréchet
derivatives of the cost functionals are derived via the solutions of
the corresponding adjoint problems. Then the Lipschitz continuity
of the gradients is proved and sufficient conditions for uniqueness
of inverse problems solutions are derived. The theory developed
here is then applied inHasanov andBaysal (2015) to the problemof
determining the unknown spatial load F(x) from the final displace-
ment observation in a cantilever beam governed by the equation
m(x)utt + (EI(x)uxx)xx = F(x)H(t).

Spatial load distribution identification problems have been
studied in Hasanov (2009), Hasanov and Baysal (2015), Kawano
(2014) and Nicaise and Zair (2004), assuming that the temporal
source H(t) is a known function. Of course, there is no doubt
that these type of identification problems arise in many different
engineering fields, as it is remarked above. However, to the best
knowledge of authors, it is the temporal distribution of the load
that is more difficult and important to be studied in the first
place. In many systems, especially in the case of a cantilever
beam, the spatial load distribution can even be recognized by
simple inspections. This is a specific motivation for the interest in
inverse source problems related to identification of temporal load
distribution from available boundary observation.

In the presentedworkwe study two typical and important, from
an engineering application point of view, source identification
problems (SIPs): the problem of identifying the temporal load
distribution H(t) and the problem of identifying the spatial load
distribution F(x) in a vibrating beam, from boundary observation
θ(t) := ux(0, t), i.e. slope at x = 0. The dynamic vibration of
an Euler–Bernoulli beam is governed by the following forward
problem:

ρ(x)utt + (r(x)uxx)xx = F(x)H(t), (x, t) ∈ ΩT ,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, l),
u(0, t) = uxx(0, t) = u(l, t) = ux(l, t) = 0, t ∈ (0, T ),

(1)

where ΩT := (0, l) × (0, T ). This initial–boundary value problem,
with the mixed boundary conditions, describes many engineering
models, in particular, the most commonly used hinged–clamped
bridge model (Han, Benarova, & Wei, 1999).

In the first source identification problem (subsequently, SIP(H)),
the spatial source F ∈ L2(0, l) is the input and the temporal source
H ∈ L2(0, T ) is unknown and needs to be identified from the
boundary observation

θ(t) := ux(0, t), t ∈ (0, T ]. (2)

In the second identification problem (subsequently, SIP(F)), one
needs to identify the unknown spatial source F(x) in (1), from the
boundary observation (2), assuming that the temporal source H(t)
is a given input. Our approach is based on weak solution theory of
PDEs applied to the direct problem (1), which allows use of non-
smooth input as well as noisy output data, and the quasi-solution
method for inverse problems, which choice is motivated by the
following fact. Let us introduce the input–output mapping

(ΦH)(t) := (ux(x, t;H))x=0, (3)

where u(x, t;H) is the weak solution of the forward problem (1),
corresponding to a given (admissible) source H ∈ L2(0, T ). Then
SIP(H) can be reformulated in the operator equation form asΦH =

θ . By the same way, the input–output mapping

(Ψ F)(t) := (ux(x, t; F))x=0, (4)

corresponding to SIP(F) can be introduced; here u(x, t; F) is the
weak solution of the forward problem (1) for a given (admissible)
source F ∈ L2(0, l). In this case SIP(F) can be reformulated as the
operator equation Ψ F = θ .
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