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a b s t r a c t

A novel Model Predictive Control (MPC) law for an Artificial Pancreas (AP) to automatically deliver insulin
to people with type 1 diabetes is proposed. The MPC law is an enhancement of the authors’ zone-MPC
approach that has successfully been trialled in-clinic, and targets the safe outpatient deployment of
an AP. The MPC law controls blood-glucose levels to a diurnally time-dependent zone, and enforces
diurnal, hard input constraints. The main algorithmic novelty is the use of asymmetric input costs in
the MPC problem’s objective function. This improves safety by facilitating the independent design of the
controller’s responses to hyperglycemia and hypoglycemia. The proposed controller performs predictive
pump-suspension in the face of impending hypoglycemia, and subsequent predictive pump-resumption,
based only on clinical needs and feedback. The proposed MPC strategy’s benefits are demonstrated by
in-silico studies as well as highlights from a US Food and Drug Administration approved clinical trial in
which 32 subjects each completed two 25 h closed-loop sessions employing the proposed MPC law.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Type 1 Diabetes Mellitus (T1DM) is an auto-immune disease
that destroys the pancreas’ β-cells, rendering people with T1DM
incapable of producing insulin, a hormone that facilitates absorp-
tion of glucose from the blood-stream into various types of cell,
and that plays a crucial role in the endocrine feedback mecha-
nisms that lead to glucose homeostasis in healthy people. People
with T1DM tend to suffer chronic hyperglycemia and a lack of glu-
cose homeostasis, causing severe and incurable health problems
in later life, e.g., premature cardiovascular diseases, nephropathy,
retinopathy, and neuropathy (Centers for Disease Control and Pre-
vention, 2014; The Diabetes Control and Complications Trial Re-
search Group, 1993). The number of people with T1DM in the
United States is estimated to be about 1.46 million, nearly 0.5% of
the population (Centers for Disease Control and Prevention, 2014).
Treating T1DM using an external source of insulin is effective,
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albeit burdensome, but determining the required dosage is diffi-
cult, or impossible, even for experienced and diligent patients. In-
sulin over-delivery causes hypoglycemia, which may quickly lead
to seizures, coma, and death. This work is motivated by the enor-
mous potential for automatic feedback control of insulin delivery
to improve the clinical outcomes, and alleviate the burden, result-
ing from the treatment of T1DM.

Research into a so-called Artificial Pancreas (AP), a device that
performs automatic insulin dosing and delivery to people with
T1DM, started in the 1970s (Clemens, 1979; Clemens, Chang, &
Myers, 1977), but through the development of the CGM (Hov-
orka, 2006) only became feasible beyond intensive care unitsmuch
later (Cobelli et al., 2009; Cobelli, Renard, & Kovatchev, 2011;
Doyle III, Huyett, Lee, Zisser, & Dassau, 2014; Harvey et al., 2010;
Zisser, 2011). AP control laws based on Model Predictive Con-
trol (MPC) (Breton et al., 2012; Hovorka et al., 2004; Magni et al.,
2009; Parker, Doyle III, & Peppas, 1999; Turksoy, Bayrak, Quinn,
Littlejohn, & Cinar, 2013), proportional–integral–derivative con-
trol (Marchetti, Barolo, Jovanovič, Zisser, & Seborg, 2008; Steil, Re-
brin, Darwin, Hariri, & Saad, 2006), or MD/fuzzy logic (Mauseth
et al., 2013; Nimri et al., 2014) have been deployed in human
trials. Other control schemes have been proposed and tested in-
silico, e.g., H∞ (Colmegna, Sánchez Peña, Gondhalekar, Dassau, &
Doyle III, 2014; Parker, Doyle III, Ward, & Peppas, 2000) and linear
parameter-varying (Colmegna, Sánchez-Peña, Gondhalekar, Das-
sau, & Doyle III, 2015) control. The authors’ group has been focus-
ing increasingly on developing zone-MPC strategies (Gondhalekar,
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Dassau, & Doyle III, 2014; Gondhalekar, Dassau, Zisser, & Doyle III,
2013; Grosman, Dassau, Zisser, Jovanovič, & Doyle III, 2010; van
Heusden, Dassau, Zisser, Seborg, & Doyle III, 2012), whereby the
controller reduces insulin delivery from, or supplements insulin in
addition to, subjects’ basal-insulin only when blood-glucose levels
are predicted to make an excursion from a target zone, rather than
deviate from a singular setpoint. This was motivated by clinical in-
tuition; there is not one optimal glucose level, instead all glucose
levels considered safe form an interval. Furthermore, zone-MPC
has proven effective in real-life operation of an AP, yielding con-
trol laws that exhibit limited intervention. Use of a zone induces
robustness to plant-model mismatch, model bias, and CGM sensor
errors; the controller does not respond to small deviations from the
setpoint, instead intervenes only when there is a strong indication
that intervention is required.

Only recently has an AP been considered feasible in outpatient
settings (Hovorka et al., 2014; Kovatchev et al., 2014; Phillip et al.,
2013; Russell et al., 2014), facilitated by improvements in CGM
accuracy and the availability of consumer-oriented Continuous
Subcutaneous Insulin Infusion (CSII) pumps. Safety concerns for
outpatient AP deployment are different than for in-clinic use,
and it is a contribution of the MPC strategy proposed in this
paper to explicitly address these. A primary concern is that while
asleep patients cannot monitor themselves or their equipment,
and may not respond to alarms. Thus it is the responsibility
of the control system to safeguard patients from hypoglycemia,
the main immediate risk when treating with insulin, without
requiring user-interaction. The proposed strategy improves safety
by employing a glucose target zone that is diurnal, i.e., periodic
based on the time of day (see Section 2.3). At night, assumed
(and enforced in trials) to be the time of sleep, the target zone is
raised, encouraging elevated glucose levels and thereby reduced
hypoglycemia risk. Additionally, the proposed strategy enforces a
diurnal input constraint that limits nighttime insulin infusion to
1.8 times the subjects’ basal-rate, limiting the controller’s leeway
to correct hyperglycemia (see Section 2.4). Diurnal zones and input
constraints were first described in Gondhalekar et al. (2013).

Protection from hypoglycemia is more critical at home than
in-clinic where, e.g., rescue by intra-venous glucose infusion is
feasible. Thus, even when patients are awake and aware of their
current state, the control system must prevent hypoglycemia
suitably before glucose concentrations descend to levels at which
patients experience symptoms. What is required are predictive
insulin delivery suspensions. The proposed MPC strategy (see
Section 2.6) performs appropriate predictive pump-suspensions,
and subsequent predictive pump-resumptions, promoted by the
use of novel asymmetric input cost functions in the MPC
formulation, first described in Gondhalekar et al. (2014) (see
Section 4).

Elements of the proposed MPC strategy were proposed
previously, but are brought together in thiswork, andwith settings
tuned over multiple previous clinical trials. The MPC algorithm
proposed in this paper was trialled in the first clinical deployment
of the authors’ zone-MPC approach in an outpatient setting; for
details consult the clinical companion paper (Dassau et al., 2015).
It is a contribution of this paper to describe the proposed MPC
strategy in reproducible detail, and to demonstrate its efficacy
and features using data obtained from real-life testing during
US Food and Drug Administration (FDA) approved trials (Dassau
et al., 2015). The paper is organized as follows: The feedback
MPC strategy is described in Section 2. A feed-forward method
to announcing meal intake to the control system is presented
in Section 3. The novel asymmetric input cost functions are
discussed in Section 4. In Section 5 an outline of the simulation
test procedures and results to obtain FDA approval are provided.
Highlights of clinical trials using the presented approach are
discussed in Section 6.

2. Control law design

2.1. Insulin–glucose dynamics: control-relevant model

Control law design is based on the discrete-time, linear time-
invariant (LTI) model of insulin–glucose dynamics proposed in van
Heusden et al. (2012), with sample-period T := 5 [min]. The
time step index is denoted by i. The scalar plant input is the ad-
ministered insulin bolus uIN,i [U] delivered per sample-period, and
the scalar plant output is the subject’s blood-glucose value yBG,i
[mg/dL]. The model is linearized around the steady-state of the
subject-specific, time-dependent basal input rate uBASAL,i [U/h],
achieving a blood-glucose output ys := 110 [mg/dL]. The LTI
model’s input ui and output yi are defined as:

ui := uIN,i −
uBASAL,i T
60min/h

, yi := yBG,i − ys.

We denote by Y(z−1) and U(z−1) the z-transform of the signals
of input ui and output yi, respectively. The transfer characteristics
from u to y are described by

Y

z−1


U


z−1

 =
1800 Fc
uTDI

·
z−3

1 − p1z−1
 

1 − p2z−1
2 (1)

with poles p1 := 0.98, p2 := 0.965, the subject specific total daily
insulin amount uTDI ∈ R>0 [U], and where c := −60 (1 − p1)
(1 − p2)2 is used to set the correct gain, and for unit conversion.
The so-called safety factor F is unitless and provides a mechanism
to personalize the model gain to the subject; however, F := 1.5 is
fixed throughout this paper. The 1800 term stems from the ‘‘1800
rule’’ to estimate blood-glucose decreasewith respect to (w.r.t.) the
delivery of rapid-acting insulin (Walsh & Roberts, 2006). The state-
space realization of (1) used in this work is

xi+1 = Axi + Bui, yi = Cxi (2)

A :=

p1 + 2p2 −2p1p2 − p22 p1p22
1 0 0
0 1 0

 ∈ R3×3

B :=
1800 F c

uTDI
[1 0 0]⊤∈ R3, C := [0 0 1] ∈ R1×3.

The structures of A and C indicate that, in the absence of noise, at
time-step i the three state elements x[3], x[2], and x[1] correspond to
yi, yi+1, and yi+2, respectively.

2.2. State-estimation

The proposed MPC strategy is designed for use with a CGM that
updates its glucose measurement output ỹi at the controller’s up-
date period T = 5 [min]. At each step i let ỹi ∈ R denote the most
recent CGM measurement. An estimate xi of the state of model
(2) is provided at each step i by linear recursive state-estimator
(3) (Luenberger observer, see, e.g., Levine, 2011). No notational
distinction between the actual and estimated state is made, be-
cause state x of (2) can only be estimated. Adjusting penalization
term R allows tuning the estimator’s noise rejection capabilities;
the stated value was arrived at by experimentation using the Uni-
versity of Virginia/Padova (UVA/Padova) FDA accepted metabolic
simulator (Dalla Man et al., 2014; Kovatchev, Breton, Dalla Man, &
Cobelli, 2009).

xi = x̂i + L

ỹi − ys


− ŷi


(3a)

ŷi = Cx̂i, x̂i = Axi−1 + Bui−1 (3b)
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