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a b s t r a c t

The positive realization of externally positive systems described by their transfermatrixG(z) is a complex
problemwhose analysis has been completed only recently, for the SISO case, on the basis of algebraic and
geometric approaches that underline the many constraints that condition its solution. These constraints
concern the minimal order of the obtained models, the minimality of their parameterizations and even
their existence. This paper considers the new category of quasi-positive state-space models introduced in
Guidorzi (2014) that limit the assumptions on the nonnegativeness of the state-space trajectories to the
only trajectories that can be actually generated by the systemunder nonnegative controls. It is shown that
all externally positive systems admit a quasi-positive minimally parameterized state-space realization
whose existence is not conditioned by restrictions on the signs of the parameters of the polynomials in
G(z).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of real processes are described by positive
models i.e. by models that generate nonnegative output tra-
jectories when driven by nonnegative inputs. Well known ex-
amples concern, for instance, pharmacokinetics, the diffusion of
pollutants in the environment, stocking, chemical and demo-
graphic processes as well as many others (Benvenuti & Farina,
2001; Garzia & Lockhart, 1989; Jacquez, 1985; Kajiya, Kodama, &
Abe, 1984; Rabinovitz, Wetherill, & Kopple, 1973; Van Schuppen,
1986). This relevance has attracted a wide research interest in the
properties of the associatedmodels and in the analysis and control
procedures that can be applied to this class of systems.

Modern system and control theory relies almost entirely on
the use of state-space models and, consequently, the definition of
positivity for these models (Anderson, 1997; Benvenuti, De Santis,
& Farina, 2003; Bru & Romero-Vivó, 2009; Farina & Rinaldi, 2000;
Kaczorek, 2002a,b; Luenberger, 1979) as well as the analysis of
their reachability and controllability, (Benvenuti & Farina, 2006;
Coxson & and Shapiro, 1987; Evans & Murthy, 1977; Heemels,
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van Eijndhoven, & Stoorvogel, 1998; Muratori & Rinaldi, 1989;
Murthy, 1986; Rumchev & James, 1989; Valcher, 1996), stability
and stabilizability, (Benvenuti & Farina, 2004a; Fornasini &Valcher,
1995; Muratori & Rinaldi, 1991; Rumchev & James, 1995a,b; Son &
Hinrichsen, 1996; Valcher & Farina, 2000) and observability, (Van
den Hof, 1998) properties play a central role from both theoretical
and practical viewpoints and have been deeply investigated.

State-space positive models (also called internally positive) are
defined as models where any nonnegative initial state generates,
with nonnegative input sequences, nonnegative state and output
trajectories, i.e. trajectories belonging to the positive orthants of
the state and output spaces. Despite this simple and ‘‘natural’’
definition, the positive realization problem proved to be very
challenging because of the severe existence conditions that lead
also to the impossibility, in some cases, of obtaining realizations
and, in some other cases, lead to models whose order is much
larger than the order of the associated transfer function (Benvenuti
& Farina, 1999). The direct use of these models can lead to
computational difficulties in their analysis and synthesis and it is
thus important to have the possibility of replacing positive high
order models with reduced ones selected on the basis of suitable
criteria like those described in Li, Lam, Wang, and Date (2011) and
Li, Yu, and and Gao (2015).

A very complete picture of the positive realization problem
can be found in the excellent tutorial (Benvenuti & Farina, 2004b)
that treats, from both geometrical and algebraic points of view,
this topic and the constraints associated with the search for
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minimal state-space realizations. Other interesting contributions
can be found in Anderson (1999), Anderson, Deistler, Farina, and
Benvenuti (1996), Farina and Benvenuti (1995), Kaczorek (1997),
Kaczorek (2011), Kaczorek and Sajewski (2014), Ohta, Maeda, and
Kodama (1984), Valcher (2001) and Van den Hof (1997).

A newapproach to the realization of externally positive systems
has been introduced in Guidorzi (2014) on the basis of the defini-
tion of quasi-positive state-space models that limit the positivity
properties to reachable states. The introduction of quasi-positive
systems allows to prove the existence of positive output/state
maps associated with a well defined state-space basis and to use a
canonical realization algorithm to obtain a minimal quasi-positive
state-space model with the assigned positive transfer function.

It can be observed that relaxing the positivity constraint on
non reachable states has no consequences on the capability of the
model to describe the behavior of externally positive systemswhile
it assures not only existence conditions but also the minimality of
both order and parameterization of the realization.

The analysis performed in Guidorzi (2014) is limited to the
SISO case; the purpose of this paper concerns the extension
of quasi-positive realization to the MIMO case and also to
external descriptions not limited to transfermatrices but including
MFD (Matrix Fraction Descriptions) and generic input/output
trajectories. While the extension of the definition of quasi-positive
systems from the SISO to the MIMO case is straightforward, the
proof of the existence of positive maps between output and state
trajectories associated with a well defined basis in the state-space
is more complex and is based on the properties of suitable classes
of canonical MFD and state-space models.

The contents are organized as follows. Section 2 recalls themain
differences between positive and quasi-positivemodels, compares
the respective properties and proposes an example concerning
a real system that underlines the possible advantages associated
with the use of quasi-positive models in realization. Section 3
proves the existence of positive output/state maps for MIMO
systems when a suitable basis is selected in the state-space. The
previous results are then used in Section 4 for solving the quasi-
positive realization problem for MFD models. Section 5 concerns
the quasi-positive realization of generic input/output trajectories
and Section 6 that of transfer matrices. Short concluding remarks
are finally given in Section 7.

2. Positive and quasi-positive models

Systems whose ‘‘natural’’ state is intrinsically constrained in
the positive orthant are frequent in econometry, epidemiology,
biology, ecology, chemistry, hydraulics, logistics and also in many
other fields. Recently some specific properties, like reachability
and controllability, that exhibit substantial differences between
positive and non positive systems, have been studied with
reference to state-space representations and this, in turn, has
spurred remarkable interest on the positive realization problem.
When the use of positive state-spacemodels to describe externally
positive systems is suggested by specific problems, the question
to be solved concerns how obtaining models of this kind possibly
endowed with additional useful features like minimality.

2.1. Positive state-space models

Positive state-space models could be defined as models where
all state and output trajectories generated by nonnegative initial
states and input sequences belong to the nonnegative orthant
of the state and output spaces. This simple and unambiguous
definition implies a long set of properties, usually listed as follows.

Definition 1. Given a (n × n) nonnegative matrix M , σ(M) will
denote the spectrumofM , i.e. σ(M) = eig(M) = {λ1, . . . , λn}. The
spectral radius ofM , is defined as ρ(M) = maxi |λi|, (i = 1, . . . , n).
Every eigenvalue with maximal modulus is defined as dominant
eigenvalue, λd; thus ρ(M) = |λd|.

In the following the notationM ≥ 0will be used for any generic
vector or matrix M with nonnegative entries (not to be confused
with the common use concerning positive semidefinite matrices).
R+ will denote the positive orthant of Rn.
Properties of positive state-space models

The triple (A, B, C) defining the positive discrete-time state–
space model

x(k + 1) = Ax(k) + Bu(k), (1)
y(k) = Cx(k) (2)

where x ∈ X = Rn, u ∈ Rr , y ∈ Rm, is endowed with
the following properties (Anderson, 1997; Benvenuti et al., 2003;
Benvenuti & Farina, 2004b, 2006; Farina&Rinaldi, 2000; Frobenius,
1912; Karpelevich, 1988; Luenberger, 1979; Perron, 1907):

(P1) All states reachable from x(0) = 0 for u(·) ≥ 0 are positive or
null.

(P2) For every state x ∈ R+, Ax ∈ R+.
(P3) The impulse response H(k) = CA(k−1)B is positive or null for

every k > 0.
(P4) The matrices (A, B, C) have positive or null entries, A ≥ 0,

B ≥ 0, C ≥ 0.
(P5) The set of reachable states of system (1)–(2) is the convex

pointed reachability cone

Rc = cone {B, AB, A2B, . . . }. (3)

(P6) Perron–Frobenius theorem. The dominant eigenvalues of A
are all the roots of λk

− ρ(A)k = 0 for some (also more
than one) values of k = 1, 2, . . . , n. One of the dominant
eigenvalues is positive real, i.e. ρ(A) ∈ σ(A) and, for every
dominant eigenvalue, λd, deg ρ(A) > deg λd.

(P7) Karpelevich theorem. The regions of the complex plane that
contain the eigenvalues of A are symmetric with respect to
the real axis, are included in the disc |z| ≤ 1, and intersect
the circle |z| = 1 in the points e(2π ia/b) where a and b run over
the relatively prime integers satisfying the condition 0 ≤ a ≤

b ≤ n. The boundary of these regions consists of these points
and of curvilinear arcs connecting them in circular order.

2.2. Quasi-Positive state-space models

Quasi-positive state-space models, introduced in Guidorzi
(2014), can be described as models where all state and output
trajectories generated by reachable nonnegative initial states with
nonnegative input sequences are nonnegative. The difference with
the definition of positive systems is minimal (the word reachable),
the consequences are not. The properties of quasi-positive models
can be listed as follows.

(QP1) All states reachable from x(0) = 0 for u(·) ≥ 0 are positive
or null.

(QP2) For every reachable state x ∈ R+, Ax ∈ R+.
(QP3) The impulse responseH(k) = CA(k−1)B is positive or null for

every k > 0.
(QP4) The matrices B and C have positive or null entries, B ≥ 0,

C ≥ 0.
(QP5) The set of reachable states is the convex pointed reachability

cone Rc (3).
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