
Web Semantics: Science, Services and Agents on the World Wide Web 31 (2015) 1–26

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

On the formulation of performant SPARQL queries
Antonis Loizou a,∗, Renzo Angles b, Paul Groth a

a Department of Computer Science, VU University of Amsterdam, The Netherlands
b Department of Computer Science, Universidad de Talca, Chile

a r t i c l e i n f o

Article history:
Received 25 February 2014
Received in revised form
20 June 2014
Accepted 7 November 2014
Available online 15 November 2014

Keywords:
SPARQL
Heuristics
Optimisation
RDF store
Data integration
Biomedical data

a b s t r a c t

The combination of the flexibility of RDF and the expressiveness of SPARQL provides a powerful
mechanism to model, integrate and query data. However, these properties also mean that it is nontrivial
to write performant SPARQL queries. Indeed, it is quite easy to create queries that tax even the most
optimised triple stores. Currently, application developers have little concrete guidance on how to write
‘‘good’’ queries. The goal of this paper is to begin to bridge this gap. It describes 5 heuristics that can be
applied to create optimised queries. The heuristics are informed by formal results in the literature on the
semantics and complexity of evaluating SPARQL queries, which ensures that queries following these rules
canbe optimised effectively by anunderlyingRDF store.Moreover,we empirically verify the efficacy of the
heuristics using a set of openly available datasets and corresponding SPARQL queries developed by a large
pharmacology data integration project. The experimental results show improvements in performance
across six state-of-the-art RDF stores.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-SA license

(http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Since the release of the Resource Description Framework (RDF)
as a W3C Recommendation in 1999 [1,2], the amount of data
published in various RDF serialisations has been rapidly increasing.
Sindice1 currently indexes 15+ billion triples [3,4]. The Linking
Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch2

provides a striking visualisation of the diversity of domains that
this data covers. The query language SPARQL [5] and SPARQL 1.1
update [6] is the W3C Recommendation for querying RDF data.

The flexibility in terms of both data structures and vocabularies
make RDF and Linked Open Data attractive from a data provider
perspective, but poses significant challenges in formulating cor-
rect, complex and performant SPARQL queries [7].3,4 Application
developers need to be familiar with various data schemas, cardi-
nalities, and query evaluation characteristics in order to write ef-
fective SPARQL queries [8].

∗ Corresponding author.
E-mail addresses: a.loizou@vu.nl (A. Loizou), rangles@utalca.cl (R. Angles),

p.t.groth@vu.nl (P. Groth).
1 http://sindice.com.
2 http://lod-cloud.net/.
3 ‘YarcData: Tuning SPARQL Queries for Performance’, see: http://yarcdata.com/

blog/?p=312.
4 ‘YarcData: Dont use a hammer to screw in a nail: Alternatives to REGEX in

SPARQL’, see: http://yarcdata.com/blog/?p=811.

The contribution of this paper is a set of heuristics that can
be used to formulate complex, but performant SPARQL queries to
be evaluated against a number of RDF datasets. The heuristics are
grounded in our experience in developing the OpenPHACTS5 Plat-
form [9]—a platform to facilitate the integration of large pharma-
ceutical datasets. The efficiency of the SPARQL query templates
obtained by applying these heuristics is evaluated on a number of
widely used RDF stores and contrasted to that of baseline queries.

The rest of the paper is organised as follows. Section 2 gives the
context and motivation for this work, while Section 3 introduces
the SPARQL syntax and semantics. Section 4 presents the five
heuristics. An empirical comparison of the performance of SPARQL
queries optimised using the defined heuristics is provided in
Section 5. Section 6 discusses the inherent difficulties in providing
paginated RDF views and how these can be addressed through
some of the heuristics defined in this paper. A brief overview
of related work is provided in Section 7. Finally, we provide
concluding remarks in Section 8.

2. Motivation and context

The work presented in this paper was carried out in the con-
text of the OpenPHACTS project [10], a collaboration of research

5 http://www.openphacts.org.

http://dx.doi.org/10.1016/j.websem.2014.11.003
1570-8268/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.
0/).

http://dx.doi.org/10.1016/j.websem.2014.11.003
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2014.11.003&domain=pdf
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
mailto:a.loizou@vu.nl
mailto:rangles@utalca.cl
mailto:p.t.groth@vu.nl
http://sindice.com
http://lod-cloud.net/
http://yarcdata.com/blog/?p=312
http://yarcdata.com/blog/?p=312
http://yarcdata.com/blog/?p=312
http://yarcdata.com/blog/?p=312
http://yarcdata.com/blog/?p=312
http://yarcdata.com/blog/?p=811
http://www.openphacts.org
http://dx.doi.org/10.1016/j.websem.2014.11.003
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


2 A. Loizou et al. / Web Semantics: Science, Services and Agents on the World Wide Web 31 (2015) 1–26

institutions and major pharmaceutical companies. The key goal of
the project is to support a variety of common tasks in drug dis-
covery through a technology platform that integrates pharmaco-
logical and other biomedical research data using Semantic Web
technologies. In order to achieve this goal, the platformmust tackle
the problem of public domain data integration in the pharmacol-
ogy space and provide efficient access to the resulting integrated
data. The development of the OpenPHACTS platform is driven by a
set of concrete research questions presented in [11]. Its architec-
ture is described in [9].

In the context of OpenPHACTS, the decision was made to avoid
pushing the burden of performant query formulation to devel-
opers, but instead to provide them with an API driven by pa-
rameterised SPARQL queries [12]. This in turn created a need to
formulate a set of performant query templates that are instantiated
through API requests. The information that should be returned by
such queries is first defined by domain experts, and subsequently
the API developers are taskedwith formulating a performant query
template to satisfy the requirements given. The work presented
in this paper stems largely from our experiences in hand-crafting
such query templates. The heuristics rely on established SPARQL
algebra equivalences, but in some cases also require extensive data
statistics.We argue that the large overhead associatedwith the lat-
ter is justified by the associated increase in query performance and
the need to repeatedly evaluate queries obtained from the same
template.

A large body of work has been carried out on defining formal
semantics for RDF and SPARQL in order to analyse query complex-
ity and provide upper and lower bounds for generic SPARQL con-
structs [13–21]. These approaches aremainly focused on exploiting
the formal semantics of SPARQL in order to prove generic rewrite
rules for SPARQL patterns that are used in order to evaluate equiv-
alence or subsumption between (sets of) queries. While a more
detailed overview of the various SPARQL formalisation and opti-
misation techniques is provided in the next section, we note here
that while the findings of these studies are invaluable to better un-
derstand the complexity of evaluating SPARQL queries and provide
solid foundations for designing RDF store query planners and opti-
misers, the issue of query formulation is not addressed.

In contrast, the work presented here provides a set of heuristics
to be used in formulating performant SPARQL queries based on
concrete application requirements and known dataset schemata.
The goal is to identify patterns that can be used to formulate
queries that can be effectively optimised by a wide range of RDF
stores. To that end,we provide a comparison on the performance of
six state-of-the-art RDF storage systemswith respect to the various
query formulation techniques in order to study their effectiveness
and applicability. As the implementation details of each system,
the indices that are available and the manner in which the indices
are used vary greatly across the different systems, investigating
why one may outperform another is considered outside the scope
of this work. Instead, we report on the efficacy of the heuristics
across the different systems, considering each RDF store as a black
box.

In summary, the paper has four main contributions:

1. A mapping between formal results published in the literature
and SPARQL syntax.

2. A set of heuristics through which performant SPARQL queries
can be formulated based on application requirements.

3. Guidance for RDF store selection based on the formulated
SPARQL queries.

4. A reference set of queries and openly available datasets.

3. Preliminaries

In this section, we introduce the SPARQL query language by fol-
lowing the syntax used in [14,13,22], which is better suited to do
formal analysis than the syntax presented by the W3C specifica-
tion. The terminology given here is adopted for the remainder of
this paper.

3.1. RDF datasets

Assume there are pairwise disjoint infinite sets I (IRIs), B (Blank
nodes), and L (Literals). An RDF term is an element in the set T =
I ∪ B ∪ L. Given any structure α, we denote by iri(α), blank(α),
literal(α) and term(α) the set of IRIs, blank nodes, literals and
terms occurring in α respectively.

A tuple (v1, v2, v3) ∈ (I ∪ B) × I × T is called an RDF triple,
where v1 is the subject, v2 the predicate, and v3 the object. An RDF
Graph (just graph from now on) is a set of RDF triples. The union of
graphs, G1 ∪ G2, is the set theoretical union of their sets of triples.

An RDF dataset D is a set {G0, ⟨u1,G1⟩, . . . , ⟨un,Gn⟩}where each
Gi is a graph and each uj is an IRI. G0 is called the default graph of
D. Each pair ⟨ui,Gi⟩ is called a named graph; define name(Gi)D =
ui and graph(ui)D = Gi. The set of IRIs {u1, . . . , un} is denoted
names(D). Every dataset satisfies that: (i) it always contains one
default graph (which could be empty); (ii) there may be no named
graphs; (iii) each uj ∈ names(D) is distinct; and (iv) blank(Gi) ∩
blank(Gj) = ∅ for i ≠ j. Finally, the active graph of D is the graph
Gi used for querying D.

3.2. The SPARQL query language

SPARQL syntax
Assume the existence of an infinite set V of variables disjoint

from T. We denote by var(α) the set of variables occurring in the
structure α.

A SPARQL select query6 (or just query from now on) is a tuple
Q = (W , F , P) where W is a set of variables (the symbol ∗ can be
used to express ‘‘all variables’’), F is a set-possibly empty-of dataset
clauses, and P is a graph pattern. Next we define each component.

A dataset clause is either an expression FROM u or FROM
NAMED u where u ∈ I. The set of dataset clauses is used to define
the RDF dataset used by the query.

A graph pattern is defined recursively as follows:

– The expression () is a graph pattern called the empty graph
pattern.

– A tuple from (I ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is a graph pattern
called a triple pattern.

– If P1 and P2 are graph patterns then (P1 AND P2), (P1 UNION
P2), and (P1 OPT P2) are graph patterns.

– If P1 is a graph pattern and u ∈ I ∪ V then (u GRAPH P1) is a
graph pattern.

– If P1 is a graph pattern then (P1 FILTER C) is a graph pattern,
where C is a filter constraint which is defined recursively as fol-
lows: (i) If ?X, ?Y ∈ V and u ∈ I ∪ L, then ?X = u and ?X = ?Y
are atomic filter constraints.7 (ii) If C1 and C2 are filter constraints
then (¬C1), (C1 ∧ C2) and (C1 ∨ C2) are filter constraints.

In this paper, we will assume that every query Q = (W , F , P)
satisfies the following conditions:

– If ?X ∈ var(W ) then ?X ∈ var(P). (Safe result condition.)

6 In this paper, we restrict our study to Select queries and we do not consider
solution modifiers.
7 For a complete list of atomic filter constraints see [6].



Download English Version:

https://daneshyari.com/en/article/6950540

Download Persian Version:

https://daneshyari.com/article/6950540

Daneshyari.com

https://daneshyari.com/en/article/6950540
https://daneshyari.com/article/6950540
https://daneshyari.com

