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a b s t r a c t

The concepts of ultimate bounds and invariant sets play a key role in several control theory problems, as
they replace the notion of asymptotic stability in the presence of unknown disturbances. However, when
the disturbances are unbounded, as in the case of Gaussian white noise, no ultimate bounds nor invariant
sets can in general be found. To overcome this limitation we introduced, in previous work, the notions
of probabilistic ultimate bound (PUB) and probabilistic invariant set (PIS) for discrete-time systems. This
article extends the notions of PUB and PIS to continuous-time systems, studying their main properties
and providing tools for their calculation. In addition, the use of these concepts in robust control design by
covariance assignment is presented.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamical systems under the influence of non-vanishing un-
known disturbances cannot achieve asymptotic stability in gen-
eral. However, under certain conditions, the ultimate boundedness
of the system trajectories can be guaranteed and invariant sets can
be found. Consequently, the notions of ultimate bounds (UB) and
invariant sets (IS) play a key role in control systems theory and de-
sign.

A necessary condition to ensure the existence of ultimate
bounds and invariant sets is that the disturbances must be
bounded. However, in systems theory, disturbances are often
represented by unbounded signals such as Gaussianwhite noise, in
which case ultimate bounds and invariant sets cannot be obtained
in a classical sense. To overcome this problem, the authors have
introduced inKofman,DeDoná, and Seron (2011, 2012) thenotions
of probabilistic ultimate bound (PUB) and probabilistic invariant set
(PIS), as sets where the trajectories converge to and stay in with a
given probability.

✩ The material in this paper was partially presented at the 19th IFAC World
Congress, August 24–29, 2014, Cape Town, South Africa. This paper was
recommended for publication in revised form by Associate Editor Akira Kojima
under the direction of Editor Ian R. Petersen.

E-mail addresses: kofman@cifasis-conicet.gov.ar (E. Kofman),
Jose.Dedona@newcastle.edu.au (J.A. De Doná), Maria.Seron@newcastle.edu.au
(M.M. Seron), pizzi@cifasis-conicet.gov.ar (N. Pizzi).

Classic UB and IS are an important tool in modern treatments
of model predictive control (see, e.g., Mayne, Rawlings, Rao, &
Scokaert, 2000; Rawlings & Mayne, 2009), fault diagnosis and
fault tolerant control (see, e.g., Olaru, De Doná, Seron, & Stoican,
2010; Seron, Zhuo, De Doná, & Martínez, 2008) and several other
applications of set invariance in control problems (see Blanchini,
1999 and the references therein). With the usage of the PUB and
PIS notions,many of these applications can be extended to consider
also the presence of unbounded disturbances. In fact, some recent
works on model predictive control use concepts that are related to
probabilistic invariant sets (see, e.g., Cannon, Kouvaritakis, & Wu,
2009; González et al., 2014; Hashimoto, 2013).

Although the concepts in Kofman et al. (2011, 2012) are limited
to the discrete-time domain, ultimate boundedness and invariance
are also important concepts in continuous-time systems, and
they experience the same limitations regarding unbounded
disturbances.

Motivated by these facts, this work firstly extends the notions,
properties and tools for PUB and PIS developed in Kofman et al.
(2011, 2012) to the continuous-time domain. While in the case
of PUB the extension is almost straightforward, the concept of
probabilistic invariance in continuous time needs to be redefined
because of the limitations imposed by the infinite-bandwidth
nature of continuous-time white noise disturbances (see, e.g., the
insightful discussions in Åström, 1970).

Finally, the problem of designing a feedback controller so that
the closed-loop system under white noise disturbances has a
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desired PUB is addressed. Preliminary results covering only single
input systems in controller canonical form were presented by the
authors in the conference paper (Kofman, De Doná, Seron, & Pizzi,
2014). The current journal version completes the contribution by
presenting new results that generalise the techniques to multiple
input systems given in general form.

The paper is organised as follows: Section 2 introduces the
concepts of continuous timePUB andPIS and establishes their basic
properties. Then, Section 3 presents closed-form formulas for the
calculation of PUB and PIS, respectively. Section 4 develops the
technique for control design and Section 5 illustrates the results
with a numerical example.

2. Background and definitions

We consider a continuous-time LTI system given by the
following stochastic differential equation
dx(t) = Ax(t)dt + dw(t) (1)
with x(t), w(t) ∈ Rn and A ∈ Rn×n being a Hurwitz matrix.

Assumption 1. The disturbancew(t) is a stochastic processwhose
increments are stationary and uncorrelated with zeromean values
(i.e., a Lévy process, that in the case of a normal distribution
becomes a Wiener process). We assume also that w(t) has
incremental covariance Σwdt , cov[dw(t)] = E[dw(t)dwT (t)]
with Σw being a finite covariance matrix.

2.1. Expected Value and Covariance of x(t)

The characterisation of probabilistic ultimate bounds and
invariant sets is based on the stochastic properties of the solution
x(t) of Eq. (1). Given a time t , the covariance of the solution is
defined as

Σx(t) , cov[x(t)] = E[(x(t) − E[x(t)])(x(t) − E[x(t)])T ]. (2)
Both, Σw and Σx(t) are symmetric positive semidefinite matrices.
The expected value µx(t) = E[x(t)] can be computed (see e.g.
Åström, 1970, Theorem 6.1, page 66) as the solution of µ̇x(t) =

Aµx(t). We assume that the initial state x(t0) is known, then
µx(t0) = x(t0) and the previous equation has the solution

µx(t) = eA(t−t0)x(t0). (3)
The covariance matrix Σx(t) verifies (see e.g. Åström, 1970,
Theorem 6.1, page 66) the following differential equation:

Σ̇x(t) = AΣx(t) + Σx(t)AT
+ Σw (4)

with Σx(t0) = 0 (since x(t0) is known). Since A is a Hurwitz
matrix, the latter expression converges as t → ∞. Then, defining
Σx , limt→∞ Σx(t) we have from Eq. (4) that Σx can be obtained
from the Lyapunov equation

AΣx + ΣxAT
= −Σw. (5)

2.2. Definition of PUB and γ -PIS

We next define the two notions that concern this article.

Definition 2 (Probabilistic Ultimate Bounds). Let 0 < p ≤ 1 and let
S ⊂ Rn. We say that S is a PUB with probability p for system (1) if
for every initial state x(t0) = x0 ∈ Rn there exists T = T (x0) ∈ R
such that the probability1 Pr[x(t) ∈ S] ≥ p for each t ≥ t0 + T .

1 In this work, the expression Pr[x(t) ∈ S ⊂ Rn
] denotes the probability that the

solution x(t), at time t , is in the set S ⊂ Rn . Thus, Pr[·] is the probability measure
on Euclidean space induced by the stochastic process {w(τ)|t0 ≤ τ ≤ t} via the
solution, at time t , of the stochastic differential equation (1) with known initial
condition x(t0) at time t0 .

For the definition of PIS, we first introduce the product of a scalar
γ ≥ 0 and a set S as γ S , {γ x : x ∈ S}. Notice that when
0 ≤ γ ≤ 1, and provided that S is a star-shaped set with respect
to the origin,2it follows that γ S ⊆ S.

Definition 3 (γ -Probabilistic Invariant Sets). Let 0 < p ≤ 1, 0 <
γ ≤ 1 and let S ⊂ Rn be a star-shaped set with respect to the
origin. We say that S is a γ -PIS with probability p for system (1) if
for any x(t0) ∈ γ S the probability Pr[x(t) ∈ S] ≥ p for each t > t0.

Remark 4. The definitions of PUB for discrete and continuous
time systems are almost identical. However, PIS for discrete-time
systems were defined to ensure that any trajectory starting in
the set remains in the set with a given probability. By choosing a
sufficiently large set, the contractivity of the system’s dynamics at
the boundary of the set dominates the noise and the probability
of the trajectory leaving the set at the next step can be made
arbitrarily small. In continuous time, however, this is not possible.
Irrespective of the contractivity, when a trajectory starts at time
t0 at the boundary of the set, taking t sufficiently close to t0
the dynamics is always dominated by the white noise due to its
infinite-bandwidth nature. Thus, for t → t+0 the probability that
x(t) leaves the set S only depends on the noise and becomes
independent of the size of S. In order to overcome this fundamental
difficulty, the initial states of a PIS are restricted in Definition 3 to
a subset γ S, with γ less than one.

The previous remark can be simply illustrated by the solution of
the scalar case of Eq. (1) with w(t) a Wiener process and A =

−λ, in which case x(t) = e−λ(t−t0)x(t0) +
 t
t0
e−λ(t−τ)dw(τ).

Then, it can be shown that limt→t+0
Pr[|x(t)| > |x(t0)|] =

limt→t+0
Pr
 t

t0
dw(τ) > 0


= 0.5 independently of x(t0) and

λ (since
 t
t0
dw(τ) is a zero-mean Gaussian process). That is, no

matter how contractive the term e−λt is, nor how big the initial
condition |x(t0)| is, the probability of confinement in |x(t)| ≤

|x(t0)| is dominated by the noise.

2.3. Some properties of PUB and γ -PIS

Here we present some basic properties of PUB and γ -PIS
that are analogous to those of deterministic ultimate bounds
and invariant sets. Although these properties are not used to
derive the main results of the paper, they corroborate that the
definitions of PUB and γ -PIS provided above are consistent with
their deterministic counterparts.

The basic properties of continuous-time PUB are identical to
the discrete-time ones, i.e., Lemma 3 and Corollaries 7 and 10 in
Kofman et al. (2012) are also valid for continuous-time PUB. These
properties establish that a PUB with probability p for (1) is also a
PUB with probability p̃ ≥ 0 for any p̃ < p and that the union and
intersection of PUB sets define PUB sets.

In the case of the unions and intersections of γ -PIS, the presence
of the parameter γ introduces some changes to their discrete time
counterparts. Lemma 4 in Kofman et al. (2012) is still valid (a γ -
PIS with probability p is also PUB with the same probability) but
the union and intersection of γ -PIS are now ruled by the following
proposition.

Proposition 5 (Intersection and Union of γ -PIS). Let {Si}ri=1 be a
collection of γi-PIS for system (1) with probabilities pi, i = 1, . . . , r,
respectively, then

2 A set S ⊂ Rn is star shaped, or a star domain, with respect to the origin if
x ∈ S ⇒ γ x ∈ S for all 0 ≤ γ ≤ 1.
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