
Web Semantics: Science, Services and Agents on the World Wide Web 17 (2012) 12–24

Contents lists available at SciVerse ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Improving semantic web services discovery using SPARQL-based
repository filtering
José María García ∗, David Ruiz, Antonio Ruiz-Cortés
University of Seville, ETSI Informática, Av. Reina Mercedes, s/n, 41012 Sevilla, Spain

a r t i c l e i n f o

Article history:
Received 28 August 2010
Received in revised form
19 May 2012
Accepted 9 July 2012
Available online 24 July 2012

Keywords:
Semantic web services
Service discovery
Scalability
Service repositories
Semantic web query languages

a b s t r a c t

Semantic Web Services discovery is commonly a heavyweight task, which has scalability issues when
the number of services or the ontology complexity increase, because most approaches are based on
Description Logic reasoning. As a higher number of services becomes available, there is a need for
solutions that improve discovery performance. Our proposal tackles this scalability problem by adding
a preprocessing stage based on two SPARQL queries that filter service repositories, discarding service
descriptions that do not refer to any functionality or non-functional aspect requested by the user before
the actual discovery takes place. This approach fairly reduces the search space for discovery mechanisms,
consequently improving the overall performance of this task. Furthermore, this particular solution does
not provide yet another discovery mechanism, but it is easily applicable to any of the existing ones, as
our prototype evaluation shows. Moreover, proposed queries are automatically generated from service
requests, transparently to the user. In order to validate our proposal, this article showcases an application
to the OWL-S ontology, in addition to a comprehensive performance analysis that we carried out in
order to test and compare the results obtained from proposed filters and current discovery approaches,
discussing the benefits of our proposal.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Current Semantic Web Services (SWS) discovery solutions
often suffer from scalability issues, so large and complex service
repositories cannot be properly handled by them. Although the
research community is putting efforts into improving discovery
mechanisms, the underlying reasoning facilities do not scale well
in general [1]. The approach taken in this paper does not consist
of yet another discovery mechanism, but on the inclusion of a
preprocessing stage that filters service repositories using two
different queries, so that the search space for discovery processes is
reduced in our experiments, on average, from 12.5% of the original
repository size up to 1.1%, depending on the concrete query used
and the nature of the repository and user request. Consequently,
service discovery execution time is greatly improved, performing
the whole process, when using our proposed filters, at least 9.1
times faster and up to 44.7 times faster, with a contained penalty
on precision, depending on each corresponding query and the
underlying discovery mechanism chosen.

∗ Corresponding author. Tel.: +34 9545 59814; fax: +34 9545 57139.
E-mail addresses: josemgarcia@us.es (J.M. García), druiz@us.es (D. Ruiz),

aruiz@us.es (A. Ruiz-Cortés).
URL: http://www.isa.us.es/josemaria.garcia (J.M. García).

The number of currently available services in public reposito-
ries1 is expected to explode in the future, so that billions of ser-
vices will be able to be consumed on the Web [2]. Furthermore,
currently available semantic descriptions, in terms of SWS classical
ontologies such as OWL-S orWSMO, present a high complexity for
defining and processing them. Both issues lead to a scenario where
discovery mechanisms based on different logic formalisms have
scalability issues. Consequently, current research efforts focus on
providing improvements and optimizations of those mechanisms,
using lightweight semantic technologies, in order to enhance the
usability of SWS [3,4].

In order to alleviate the scalability problem on semantic dis-
covery mechanisms, there are some proposals that provide dif-
ferent techniques to improve the discovery performance, such as
indexing or caching descriptions [5], using several matchmaking
stages [6], and hybrid approaches that include non-semantic tech-
niques [7]. Our proposal takes a novel approach of reducing the in-
put for discoverymechanisms, so that the resulting process ismore
streamlined, only reasoning about services which actually matter
with respect to the user request. Thus, our solution filters services
that can be discarded a priori, because they are not related at all

1 At the moment of writing, seekda! service crawler has indexed 28,606 services,
ProgrammableWeb has registered 3,287 web APIs, and iServe repository contains
2,193 SWS descriptions.

1570-8268/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2012.07.002

http://dx.doi.org/10.1016/j.websem.2012.07.002
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
mailto:josemgarcia@us.es
mailto:druiz@us.es
mailto:aruiz@us.es
http://www.isa.us.es/josemaria.garcia
http://www.isa.us.es/josemaria.garcia
http://www.isa.us.es/josemaria.garcia
http://www.isa.us.es/josemaria.garcia
http://www.isa.us.es/josemaria.garcia
http://www.isa.us.es/josemaria.garcia
http://www.isa.us.es/josemaria.garcia
http://dx.doi.org/10.1016/j.websem.2012.07.002


J.M. García et al. / Web Semantics: Science, Services and Agents on the World Wide Web 17 (2012) 12–24 13

with requirements and preferences stated by the user, consider-
ably reducing the search space before actual discovery.

For example, consider the following scenario: a semantic ser-
vice repository contains thousands of services from several travel-
related domains, such as hotel bookings, plane tickets, car rentals,
and travel insurances. If a user looks for a service that returns hotels
given a particular city and a country, it is not necessary to process
thewhole repository to discover candidate services for the user re-
quest, but only consider the portion of services that are specifically
related to the hotel lookup domain concepts that appear on the re-
quest, in this case. Thus, using lightweight technologies to prepro-
cess the repository, the search space canbe reduced in order to save
computational resources and improve discovery performance.

For the proposed preprocessing, our proposal analyzes the user
request in order to extract the concepts that are being used in its
semantic definition (in the above example, some of them could be
City, Country or Hotel, for instance). Then, the repository is filtered
so that only services that use those concepts or related ones are
selected to become the input for the subsequent discovery process
(e.g. services whose definitions refer to City, Country and/or Hotel
concepts, in the latter case).

Two different SPARQL [8] queries perform the filtering in our
approach, namely Qall and Qsome. The former returns only those
services whose definitions contain all the concepts referred by a
user request, assuming that services have to fulfill every termof the
request in order to be useful for the user. In turn, the latter query
selects service definitions that refer to some (at least one) of the
concepts referred by a user request, assuming that those services
may satisfy its requirements and/or preferences to some extent,
despite the missing information.

Our solution does not pretend to provide yet another discovery
mechanism, but to introduce a preprocessing filtering stage, based
on an accepted standard, that yields a notable improvement on
heavyweight semantic processes, such asmatchmaking of services.
Furthermore, our proposed filtering does not add a noticeable
amount of execution time with respect to matchmaking, because
SPARQL queries used present a linear complexity on the size of the
dataset and graph patterns included [9].

To the best of our knowledge, there are no proposals on filtering
semantically-enhanced service repositories, but it is acknowledged
that some sort of preprocessing can alleviate discovery and ranking
tasks performed on those repositories [6]. To sum up, the main
contributions of the proposal presented in this article are the
following:

1. We propose a technique to improve semantic service discovery
performance, based on a preprocessing stage that filters reposi-
tories in order to reduce the search space of subsequent discov-
ery processes.

2. Our proposal is applicable to any discoverymechanism because
it is performed before actual discovery occurs, and it allows in-
teroperability with existing service repositories. In this work,
we use the OWLS-MX hybrid matchmaker [7] to illustrate this
point, though our proposal has also been applied to other dis-
covery mechanisms [10].

3. Filtering is performed automatically fromuser requests, analyz-
ing them and obtaining standard SPARQL queries without user
interaction. Two different queries are presented, enabling two
filtering levels, depending on the user needs and the character-
istics of service repositories.We analyze and thoroughly discuss
each query throughout the article.

4. In order to assess the actual impact of our proposal, we car-
ried out a comprehensive, experimental study. Using a widely-
used test collection (OWLS-TC), we applied our proposed filters
to several discovery mechanisms, evaluating and discussing
performance improvements using the Semantic Web Service
Matchmaker Evaluation Environment (SME2).

The rest of the article is structured as follows. Firstly, Section 2
presents some background information to contextualize andmoti-
vate the proposal. In Section 3 we show how to use SPARQL-based
filtering within a discovery scenario, presenting both restrictive
and relaxed filters that can be applied in different cases. Section 4
discuss the integration and implementation of our proposal ap-
plied to SWS frameworks, specifically OWL-S. Then, in Section 5
the performed experimental study is explained, analyzing the re-
sults and discussing the advantages of our proposal. Section 6 out-
lines the related work on this field. Finally, in Section 7 we discuss
the conclusions.

2. Background

Using a Semantic Web query language is a natural fit for
performing SWS discovery and ranking processes in terms of user
requests, because, essentially, these processes search for elements
in some sort of persistent storage using selection and ordering
criteria. However, current query languages present shortcomings
with respect to the level of inference and computation needed
for SWS discovery and ranking. In the following we introduce the
background elements of our proposal in order to contextualize and
further motivate our work.

2.1. Querying the Semantic Web

There are three main approaches for Semantic Web query
languages: graph-based, rule-based, and DL-based query lan-
guages [11–13]. Firstly, graph-based query languages allow us
to fetch RDF [14] triples based on matching triple patterns with
RDF graphs. Secondly, rule-based query languages propose logic
rules to define queries, supporting RDF reasoning systems. Finally,
DL-based query languages allow us to query Description Logic (DL)
ontologies described in OWL-DL [15], being able to search for con-
cepts, properties, and individuals. In general, rule- and DL-based
query languages provide more reasoning mechanisms than graph-
based ones, though it depends on the entailment regime applied
to the concrete triple store and querying system. However, the
former are not mature enough and they are in early stages of
development [11], so the latter are more widely used, especially
SPARQL [8], which is the current W3C Recommendation.

There are several graph-based query languages with different
features [11], but SPARQL is the only language that is a W3C
Recommendation [8]. In fact, it is fully supported in several
implementations.2 As a consequence, SPARQL (and its extensions)
is the most widely used query language for the Semantic Web.
There are several SPARQL implementations, such as Virtuoso,
Sesame and ARQ,3 which is included in the Jena Semantic Web
Framework for Java. The latter is the chosen one for our evaluation
tests presented in Section 5.

SPARQL, as a graph-based query language, explicitly accounts
for the definition of labeled directed graphs by RDF triples, which
conforms the very foundations of a Semantic Web ontology. Its
main approach to query semantic repositories is to define graph
patterns involving triple patterns, matching RDF triples, which are
usually denoted (s, p, o), where s is the subject, p the predicate, and
o the object. In order to work with said repositories, SPARQL has
four different types of queries: SELECT, CONSTRUCT, DESCRIBE
and ASK. Each type serves for a different purpose: SELECT queries
return variables and their bindings with respect to the stored
RDF triples; CONSTRUCT queries build an RDF graph based on

2 http://www.w3.org/2001/sw/DataAccess/tests/implementations.
3 Virtuoso: http://www.openlinksw.com/virtuoso/ ;

Sesame: http://www.openrdf.org/ ; ARQ: http://jena.sourceforge.net/ARQ/.

http://www.w3.org/2001/sw/DataAccess/tests/implementations
http://www.openlinksw.com/virtuoso/
http://www.openrdf.org/
http://jena.sourceforge.net/ARQ/


Download	English	Version:

https://daneshyari.com/en/article/6950576

Download	Persian	Version:

https://daneshyari.com/article/6950576

Daneshyari.com

https://daneshyari.com/en/article/6950576
https://daneshyari.com/article/6950576
https://daneshyari.com/

