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a b s t r a c t

This paper considers the linear approximation and identification of multi-input multi-output (MIMO)
Wiener–Hammerstein systems, or LNL systems. Evaluating the input–output cross-covariance matrix of
the MIMO LNL system for Gaussian inputs, we show that the best linear approximation of the MIMO
LNL system in the mean square sense can be obtained by the orthogonal projection (ORT) subspace
identification method. For each allocation of the poles of the best linear approximation between the
two linear subsystems, the unknown parameters in the numerators of the linear subsystems and the
coefficients of a basis function expansion of the nonlinearity are estimated by applying the separable
least-squares. The best LNL system is the one that gives the minimum mean square output error. A
numerical example is included to show the feasibility of the present approach.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The classical result due to Bussgang (1952) that exactly com-
putes the input–output correlation function of a nonlinear system
has been applied to the identification of single-input single-output
(SISO) Wiener–Hammerstein systems, or LNL systems (Billings &
Fakhouri, 1982; Hunter & Korenberg, 1986), where a static non-
linearity (N) is sandwiched by two linear (L) subsystems. For
recent developments in the identification of LNL systems; see
Greblicki (2012), Mu and Chen (2014), Schoukens, Pintelon, and
Enqvist (2008). Also, the result of Bussgang (1952) has been
employed to develop the multivariable output-error state space
(MOESP)-based methods for identifying multi-input multi-output
(MIMO) Wiener and Hammerstein systems (Verhaegen & West-
wick, 1996; Westwick & Verhaegen, 1996). The linear approxima-
tion problems for SISO nonlinear finite impulse response (NFIR)
systems, that include LNL systems, have extensively been stud-
ied using the classical Wiener theory (Enqvist & Ljung, 2005),
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extending the results of Bussgang (1952). Moreover, a partition-
ing approach for identifying an SISO Wiener–Hammerstein sys-
tem has been developed by using the best linear approximation
of it (Sjöberg, Lauwers, & Schoukens, 2012; Sjöberg & Schoukens,
2012), therein the consistency of the initialization algorithm is
shown.

In Ase and Katayama (2015), motivated by the subspace-
based approaches (Verhaegen & Westwick, 1996; Westwick &
Verhaegen, 1996) and by the partitioning method (Sjöberg &
Schoukens, 2012), we have presented a subspace-based method
of identifying the Wiener–Hammerstein benchmark model by
using the orthogonal projection (ORT) subspace method (Picci &
Katayama, 1996) and the separable least-squares (Golub & Pereyra,
1973). In this paper, we deal with the linear approximation and
identification of MIMO Wiener–Hammerstein systems, extending
the SISO results of Ase and Katayama (2015) to MIMO systems.

We first derive the input–output cross-covariance matrix of
an MIMO LNL system for Gaussian inputs, from which we show
that the best linear approximation, or the best linear model, of the
LNL system in the mean square sense is obtained by replacing the
static nonlinearity with the equivalent gainmatrix. It is also shown
that the best linear model is consistently identified using the ORT
subspace method.

To identify the LNL system, the poles of the best linear
model are then allocated between the two linear subsystems by
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Fig. 1. LNL system.

using a state transformation (Ase & Katayama, 2015). For each
realizable allocation of the poles, we estimate unknown system
parameters and the coefficients of a basis function expansion of the
nonlinearity by the separable least-squares, which is solved using a
gradient-based optimization method (Wills & Ninness, 2008); the
best LNL configuration is selected based on themean square output
error.

The paper is organized as follows. Section 2 computes the in-
put–output cross-covariance matrix of MIMO LNL systems. In Sec-
tion 3,we consider the best linear approximation of the LNL system
from the point of view of the orthogonal projection. The identifica-
tion procedure of the best linear model by the ORT method is dis-
cussed in Section 4, and Section 5 explains a method of allocating
the poles of the best linear model between the two linear subsys-
tems. Based on a basis function expansion of the nonlinearity, we
outline a method of identifying MIMO LNL systems in Section 6,
and a feasibility study is included in Section 7. Section 8 concludes
this paper.

Notation: E{·} denotes the mathematical expectation, and
Ê{· | ·} orthogonal projection. Two random vectors a and b are said
to be orthogonal, or uncorrelated, if E{abT} = 0,which is expressed
as a ⊥ b.

2. Input–output cross-covariance matrix

We consider the LNL system shown in Fig. 1, where G1(z)
and G2(z) are linear subsystems, and f : Rr

→ Rq is a static
nonlinearity. Also, u(t) ∈ Rm is the input, v(t) ∈ Rr is the output of
G2(z), w(t) ∈ Rq is the output of the nonlinearity and the input to
G1(z), y0(t) ∈ Rp is the noise-free output, y(t) ∈ Rp is the output,
and ν(t) ∈ Rp is the output noise.

To ensure that all the variables are 2nd-order stationary random
processes, we assume the following.

Assumption 1. (i) The input u(t) is a zero mean stationary
Gaussian process with a finite covariance matrix, and ν(t) is a zero
mean white noise sequence.

(ii) The linear subsystems G1(z) and G2(z) are stable, and there
is no pole-zero cancellation between them (Anderson & Gevers,
1981).

(iii) The nonlinearity is a measurable function, and the variance
of output of the nonlinearity is bounded, i.e.

E{|fij(v)|2} < ∞, i = 1, . . . , q; j = 1, . . . , r

and each element of the nonlinearity is well approximated by a
basis function expansion (Ljung, 1999). �

The input–output cross-covariance matrix is defined by Ryu(τ )

= E{y(t)uT(t−τ)}, τ = 0, ±1, . . . , and other covariancematrices
are defined similarly. Let G(·)

i be the impulse response matrices of
Gi(z), i.e.

Gi(z) =

∞
k=0

G(k)
i z−k, i = 1, 2.

Under Assumption 1, we show the following result, an MIMO
extension of the Bussgang’s result (Bussgang, 1952).

Proposition 1. The input–output cross-covariance matrix of the LNL
system of Fig. 1 is given by

Ryu(τ ) =

∞
k=0

G(k)
1 F e

∞
j=0

G(j)
2 Ruu(τ − j − k) (1)

where Ruu(·) is the covariance matrix of the input u(t), and F e is
the equivalent gain matrix of the nonlinearity defined by F e

:=

E{f (v(t))vT(t)}R−1
vv (0) ∈ Rq×r (Roberts & Spanos, 1990), where

Rvv(0) is the covariance matrix of v(t).

Proof. See Appendix. �

In the next section, we derive a useful orthogonal projection result
from (1).

3. Linear approximation of LNL system

Let U−

t := span{u(t), u(t − 1), . . .} be the linear subspace
spanned by the past inputs,where the over-bar denotes the closure
in mean square. Let the orthogonal projection onto U−

t be defined
by Ê{· | U−

t }.
By the definition of the covariance matrix, we see that (1) is

equivalent to the following condition

y(t) −

∞
j=0

G(j)
1

∞
k=0

F eG(k)
2 u(t − j − k) ⊥ u(t − τ)

for τ = 0, ±1, . . . . Define

yd(t) =

∞
j=0

G(j)
1 F e

∞
k=0

G(k)
2 u(t − j − k). (2)

Then, yd(t) satisfies y(t) − yd(t) ⊥ U−

t and yd(t) ∈ U−

t , implying
that yd(t) is the orthogonal projection of y(t) onto the subspace
U−

t , i.e. yd(t) = Ê{y(t) | U−

t }.
It follows from (2) that yd(t) = G1(z)F eG2(z)u(t). By the

property of orthogonal projection, we see that yd(t) is the linear
least-squares estimate of y(t) given the past inputs (Enqvist &
Ljung, 2005). Hence,

Gd(z) := G1(z)F eG2(z) (3)

is the best linear approximation, or the best linear model, of the
LNL system. The best linear model is also called the deterministic
system.

Remark 1. The best linear model Gd(z) minimizes the effect of
the nonlinearity in the mean square sense (Enqvist & Ljung,
2005; Schoukens, Pintelon, Dobrowiecki, & Rolain, 2005), so that
it depends on the statistics of the input to the nonlinearity. In
fact, Gd(z) is the transfer matrix obtained by replacing the static
nonlinearity f (·) in Fig. 1 with the equivalent gain matrix F e. �

Remark 2. Since there exists no pole-zero cancellation in the
right-hand side of (3) by Assumption 1(ii), the poles of Gd(z) are
the sum of poles of G1(z) and G2(z). This fact will be utilized for
partitioning the poles of the best linear model into the two linear
subsystems.1 �

1 We can partition the zeros of Gd(z), if the inverse G−1
d (z) exists, i.e. if the

matrix D1F eD2 of (7) is nonsingular. In this paper, however, we do not consider the
partitioning of zeros, since it seems that the case where Gd(z) is invertible is very
rare in practice.
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