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a b s t r a c t

The solution concepts proposed in this paper follow the Karush–Kuhn–Tucker (KKT) conditions for
a Pareto optimal solution in finite-time, ergodic and controllable Markov chains multi-objective
programming problems. In order to solve the problem we introduce the Tikhonov’s regularizator for
ensuring the objective function is strict-convex. Then, we consider the c-variable method for introducing
equality constraints that guarantee the result belongs to the simplex and satisfies ergodicity constraints.
Lastly, we restrict the cost-functions allowing points in the Pareto front to have a small distance from
one another. The computed image points give a continuous approximation of the whole Pareto surface.
The constraints imposed by the c-variable method make the problem computationally tractable and,
the restriction imposed by the small distance change ensures the continuation of the Pareto front. We
transform the multi-objective nonlinear problem into an equivalent nonlinear programming problem
by introducing the Lagrange function multipliers. As a result we obtain that the objective function is
strict-convex, the inequality constraints are continuously differentiable and the equality constraint is an
affine function. Under these settings, the KKT optimality necessary and sufficient conditions are elicited
naturally. A numerical example is solved for providing the basic techniques to compute the Pareto optimal
solutions by resorting to KKT conditions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Brief review

The optimization problems in real life are frequently multi-
objective where several competing objective functions have to be
minimized at the same time. Classical application areas are en-
gineering, economics, others. Such optimization problems have
a very large solution set. The main focus is on finding a min-
imal solution by applying objective numerical calculations in-
volving subjective decisions made by a decision maker. The goal
is to represent the whole efficient set to provide the decision
maker with a practical understanding of the problem structure.
There has been a great deal of effort by the researchers in the
area for developing methods to generate an approximation of the
Pareto front, see e.g. Clempner and Poznyak (2016), Dutta and
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Kaya (2011), Engau and Wiecek (2007), Haimes and Chankong
(1979), Mueller-Gritschneder, Graeb, and Schlichtmann (2009)
and Zitzler, Knowles, and Thiele (2008). The efficiency of the solu-
tion set depends significantly in the application approach. AMulti-
objective problem (MOP) can be transformed into a tractability
problem applying the KKT conditions. However, several problems
arise. The resulting utility functions are in general nonconvex. In
addition, the formulation of the problem after applying the KKT
condition is in general non-linear in the case of Pareto optimality
formulation. Moreover, the solution allows global and local Pareto
optimal points. As a result, the formulation we obtained by using
the Karush–Kuhn–Tucker conditions is only necessary for our orig-
inal problem.Gatti, Rocco, and Sandholm (2013) prove that theKKT
conditions lead to another set of necessary conditions that are not
sufficient. Themain reason of obtaining a sufficient formulation for
KKT condition into the Pareto optimality formulation is to achieve
a unique solution for every Pareto point.

1.2. Related work

Different methods for necessary and sufficient conditions for
KKT optimality have been proposed in the literature. They are
based on different types of suppositions as to the properties and
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form of the problem. Several are based on a different techniques of
the original problem and different conditions are imposed to both,
the original functions and the scalarization parameters.

For the interested reader we list some important works (ex-
cellent surveys related to multi-objective Markov decision process
can be found in Chatterjee, Majumdar, and Henzinger (2006) and
Roijers, Vamplew, Whiteson, and Dazeley (2013) and for multi-
objective in Zitzler et al. (2008)). Durinovic, Lee, Katehakis, and
Filar (1986) considered a multi-objective Markovian decision pro-
cess based on the average reward function to characterize the com-
plete sets of efficient policies, efficient deterministic policies and
efficient points using linear programming. Barrett and Narayanan
(2008) described an algorithm that can learn optimal policies for
all linear preference assignments over themultiple reward criteria
at once. Vamplew, Dazeley, Barker, and Kelarev (2009) discussed
the advantages gained from applying stochastic policies to multi-
objective tasks and examined a particular form of stochastic pol-
icy known as a mixture policy proposing two different methods.
Roijers et al. (2014) proposed two algorithms for computing the
relative importance of the objectives: (a) considering an anytime
method, approximate optimistic linear support, that incrementally
builds up a complete set of epsilon-optimal plans, exploiting the
piecewise linear and convex shape of the value function and, (b)
an approximate anytime method, scalarized sample incremental
improve, that employsweight sampling to focus on themost inter-
esting regions in weight space, as suggested by a prior over pref-
erences. Pirotta, Parisi, and Restelli (2015) presented an idea to
exploit a gradient-based approach to optimize the parameters of
a function that defines a manifold in the policy parameter space so
that the corresponding image in the objective space gets as close
as possible to the Pareto frontier. In mathematical programming
problems when are made use of functions, the focus is placed into
substituting convex functions with new class of generalized con-
vex functions. The goal is obtaining a solution through an optimal-
ity condition.

1.3. Main results

This paper focuses on the conventional Markov chains multi-
objective programming problems in which are considered the
Karush–Kuhn–Tucker (KKT) conditions for a Pareto optimal so-
lution. Our aim is to study and provide the conditions on the
involved objective functions such that these are sufficient and
necessary in order for a feasible point satisfying KKT type condi-
tions to be a strong Pareto policy for the MOP. The main results
are as follows. We provide necessary and sufficient of KKT con-
ditions for efficiency to multi-objective programs introducing the
Tikhonov’s regularizator for ensuring that the objective function is
strict-convex. Because the optimization problem is strict convex
for any fixed value, then our results assert that efficient solutions
can be found by strict convex optimization, something that does
not necessary hold for efficient solutions in general. We introduce
a more restrictive concept of efficiency by ensuring strong Pareto
policies using the Tikhonov’s regularizator. Then, all efficient solu-
tions can be found by minimization of strictly convex functions.
We consider the c-variable method for introducing the equality
constraints that ensure the result belongs to the simplex and it
satisfies ergodicity constraints. The constraints imposed by the
c-variable method make the problem computationally tractable
and, the restriction imposed by the small distance change ensures
the continuation of the Pareto front. We restrict the cost-functions
allowing points in the Pareto front to have a small distance from
one another. We transform the multi-objective nonlinear prob-
lem into an equivalent nonlinear programming problem by in-
troducing the Lagrange function multipliers. We obtain that the

objective function is strict-convex, the inequality constraints are
continuously differentiable and the equality constraint is an affine
function. Under these settings, the KKT optimality necessary and
sufficient conditions are elicited naturally. In addition, we present
the convergence conditions and compute the estimate rate of con-
vergence of variables µ and δ corresponding to the step size pa-
rameter of the gradient method and the Tikhonov’s regularization
respectively.

1.4. Organization of the paper

In the remainder we proceed as follows: in Section 2 we recall
the basic concepts inMarkov chains andmulti-objective optimiza-
tion for Markov chains. In Section 3, we discuss the sufficiency and
necessity for optimal conditions. In Section 4we present a solution
concept for multi-objective optimization problem and the KKT op-
timality conditions for the problem are derived. Also a numerical
example is solved for providing the basic techniques to compute
the Pareto optimal solutions by resorting to KKT conditions in Sec-
tion 5.We concludewith some remarks on the presented approach
in Section 6.

2. Basic notations and concepts

2.1. Controllable Markov process

A controllable Markov chain is a 5-tuple MC = {S, A, A(s), Π}

where S is a finite set of states, S ⊂ N, endowed with discrete
topology; A is the set of actions, which is a metric space. For each
s ∈ S, A(s) ⊂ A is the non-empty set of admissible actions at
state s ∈ S. Without loss of generality we may take A=∪s∈SA(s);
K = {(s, a)|s ∈ S, a ∈ A(s)} is the set of admissible state-action
pairs, which is a measurable subset of S × A; Π (k) =


π(ij|k)


is a

stationary transition controlled matrix, where

π(ij|k) ≡ P

s(n + 1) = s(j)|s(n) = s(i), a(n) = a(k)


representing the probability associated with the transition from
state s(i) to state s(j) under an action a(k) ∈ A


s(i)

(k = 1, . . . ,M)

at time n ∈ N: 0, 1, . . .. The relationsπ(i,j|k) ≥ 0 and
N

j=1 π(i,j|k) =

1 are satisfied. AMarkov process is a tupleMP = {MC, J}whereMC
is a controllableMarkov chain and J : S×K → Rn is a cost function.
We will restrict attention to stationary policies. A policy d is
a (measurable) rule for choosing actions which, at each time
n ∈ N, may depend on the current state and on the record of
previous states and actions. The class of all policies is denoted by
D and, given the initial state s ∈ S and the policy d being used
for choosing actions, the distribution of the state-action process
{(sn, an)} is uniquely determined. Following, we will denote by P
and E respectively the probability measure and the expectation
operator induced by the policy d. Next, define F :=


s∈S A(s) and

notice that F is a compact metric space in the product topology
which consists of all functions f : S → A such that f (s) ∈ A(s)
for each s ∈ S. A policy d is stationary iff there exists f ∈ F such
that the equality An = f (sn) is always valid under d, i.e. d(k|i)(n) =

d(k|i). Also, under the action of any stationary policy d(k|i)(n) =

d(k|i) the state process is a Markov chain with stationary transition
mechanism. For each strategy d(k|i) the associated transitionmatrix
is defined as:

Π(d) := [π(ij|k)(d)] =

M
k=1

π(ij|k)d(k|i)

such that on a stationary state distribution for all d(k|i) and
n ≥ 0.
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