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a b s t r a c t

This paper proposes a predictor-based state feedback controller for multi-input linear time-invariant
(LTI) systems with different time delays in each individual input channel. The controller is derived
based on the backsteppingmethod. Since the conventional backstepping transformation is not applicable
to the systems due to the differences among delays, a modified transformation is introduced. This
transformation enables us to design an exponentially stabilizing controller underwhich the plant behaves
as if the delays were absent after a finite time interval. As a dual of the controller design, we also present
the observer design for multi-output LTI systems with distinct sensor delays. A numerical simulation
confirms the performance of the proposed controller.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers a stabilization problem of the fol-
lowing linear time-invariant (LTI) systems with distinct input
delays:

Ẋ(t) = AX(t)+

m
i=1

biUi(t − Di), (1)

where X(t) ∈ Rn is the state and the ith control channel Ui(t) ∈ R
is delayed by Di > 0, i ∈ {1, . . . ,m}. Stabilization of dynamical
systems in the presence of input delays has been widely studied
in the field of control engineering (Gu & Niculescu, 2003; Richard,
2003). A typical approach is the predictor-based controller (Art-
stein, 1982; Kwon&Pearson, 1980; Lewis, 1979;Manitius &Olbrot,
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1979;Watanabe & Ito, 1981). According to them,we can design the
following control law:

Ui(t) = k⊤

i


eADiX(t)+

m
j=1

 t

t−Dj

eA(t+Di−θ−Dj)bjUj(θ)dθ


, (2)

where i ∈ {1, 2, . . . ,m} (see Example 5.2 in Artstein, 1982). This
control law exponentially stabilizes the system (1), if the gains
ki ∈ Rn, i = 1, . . . ,m are chosen so that the matrix

A +

m
i=1

e−ADibik
⊤

i e
ADi (3)

is Hurwitz.
The idea of predictor-feedback is to realize Ui(t) = k⊤

i X(t +Di)

(or, equivalently, Ui(t −Di) = k⊤

i X(t)). The variation-of-constants
formula shows that the solution X(t) of (1) satisfies

X(t + Di) = eADiX(t)+

m
j=1

 t−Dji

t−Dj

eA(t+Di−θ−Dj)bjUj(θ)dθ, (4)

where Dji := Dj − Di for each i, j ∈ {1, 2, . . . ,m}. Clearly, (2) does
not imply Ui(t) = k⊤

i X(t + Di), unless m = 1 or D1 = D2 =

· · · = Dm. This fact seems to be of little importance, because the
exponential stability of the closed-loop system is guaranteed as
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long as the matrix (3) is Hurwitz. However, the stability condition
depends on delays except in the case of m = 1 or D1 = D2 =

· · · = Dm. Hence, even if the nominal feedback law Ui(t) = k⊤

i X(t)
stabilizes the undelayed system, the predictor feedback (2) does
not always stabilize (1). We need to abandon the nominal design.

Recently, another interpretation of the predictor-feedback was
made in Krstic (2009) for single-input systems. The predictor-
based controller is naturally derived by applying the infinite-
dimensional backstepping method (Krstic & Smyshlyaev, 2008;
Meurer, 2013; Vazquez & Krstic, 2008). In this approach, we repre-
sent systemswith an input delay by a cascade of an ordinary differ-
ential equation (ODE) and a transport partial differential equation
(PDE). Then, a state transformation, called the backstepping trans-
formation, is used to convert the original system into a stable target
system. The feedback control law is obtained as a condition under
which the transformation is accomplished. As the main feature of
the backstepping approach, we can construct an explicit Lyapunov
functional of the closed-loop system, which brings some benefit as
pointed out in Krstic (2009, 2008).

Actually, an extension of the backstepping approach to the
systems given by (1) is available by specializing the result in
Bekiaris-Liberis and Krstic (2011), which deals with more general
distributed delays. The resulting controller is the same as (2).
However, this result does not seem to be amulti-input counterpart
of the result in Krstic (2009). First of all, we need to use the
backstepping-forwarding transformation. Since the system (1)
does not contain distributed delays, the forwarding part should
be unnecessary. In addition, the transformation involving the
forwarding part is not always invertible (Bribiesca Argomedo &
Krstic, 2015). The other reason is that the structure of the target
system used there is completely different from the one in Krstic
(2009).

The purpose of this paper is to obtain a predictor-based
controller that is more compatible with the variation-of-constant
formula (4) by extending the backstepping approach to multi-
input LTI systems with distinct input delays. The goal is achieved
by introducing a new backstepping-like transformation. This is
the main contribution of this paper. The resulting controller
has a structure that is naturally expected from the variation-of-
constants formula. Furthermore, it is guaranteed that the closed-
loop system behaves as if the nominal static feedback control were
realized after a finite time interval. This fact is an advantage of
the proposed approach, since we can exploit the nominal feedback
gain. An explicit Lyapunov functional for the closed-loop system is
available. In addition to the predictor-feedback controller, we also
derive an observer for multi-output systems with distinct output
delays by developing a dual method. This is one of the substantial
differences from our earlier conference paper (Tsubakino, Oliveira,
& Krstic, 2015).

The organization of the paper is as follows. In Section 2,
we present controller design using the proposed transformation.
Section 3 is devoted to the stability analysis of the closed-loop
system. A Lyapunov functional is introduced. In Section 4, we
develop an observer designmethod as a dual result of the foregoing
two sections. The effectiveness of the proposed controller is
demonstrated by a numerical simulation in Section 5.

2. Controller design

Without loss of generality, we can assume that the control
inputs are ordered so that 0 ≤ D1 ≤ D2 ≤ · · · ≤ Dm. It is
convenient to letD0 = 0. SetB = (b1, b2, . . . , bm) ∈ Rn×m.We also
suppose that the pair (A, B) is stabilizable. In other words, there
exists a matrix K = (k1, k2, . . . , km)⊤ ∈ Rm×n such that A + BK is
Hurwitz. Let us represent the system (1) as the ODE–PDE cascade

Ẋ(t) = AX(t)+

m
i=1

biui(0, t), (5)

∂tui(x, t) = ∂xui(x, t), x ∈ (0,Di), (6)
ui(Di, t) = Ui(t), i ∈ {1, 2, . . . ,m}. (7)

The equivalence between (1) and (5)–(7) can be seen by noticing
that the solution of (6) under the condition (7) is given by ui(x, t) =

Ui(x + t − Di) for x ∈ [0,Di] and t ≥ Di − x.
The main procedure of backstepping is to find a state

transformation and a state feedback control law that convert
the system (5)–(7) into a stable target system. We employ the
following target system:

Ẋ(t) = (A + BK) X(t)+

m
i=1

biwi(0, t), (8)

∂twi(x, t) = ∂xwi(x, t), x ∈ (0,Di), (9)
wi(Di, t) = 0, i ∈ {1, 2, . . . ,m}. (10)

The solution to (9) with (10) satisfies wi(x, t) = 0 for any x ∈

[0,Di] after t = Di. Hence, the state X satisfies

Ẋ(t) = (A + BK)X(t), t ≥ Dm.

Thus, the plant obeys the nominal closed-loop equation after t =

Dm. The stability with respect to an appropriate norm will be
discussed later.

Ifm = 1, we can use the standard backstepping transformation
proposed in Krstic (2009). Even if m ≠ 1, we can easily obtain a
multi-variable version of the backstepping transformation in the
case of identical delays, that is, D1 = D2 = · · · = Dm. The main
difficulty in our case is that each ui has a different spatial domain
[0,Di] due to the discrepancy of delays. For this reason,we propose
a new state transformation that is suitable to the system (5)–(7).

2.1. Backstepping-like transformation

For each i ∈ {1, 2, . . . ,m}, define a function φi : [0,Dm] →

[0,Di] and the matrix Ai ∈ Rn×n by

φi(x) =


x, 0 ≤ x ≤ Di,
Di, Di < x ≤ Dm,

(11)

Ai = Ai−1 + bik
⊤

i , (12)

where A0 = A. Obviously, we have Am = A+BK . LetΦ be the state
transition matrix generated by

F(t) =

A, t ∈ [0,D1),
Ai, t ∈ [Di,Di+1), i = 1, 2, . . . ,m − 1,
Am, t ≥ Dm.

The explicit expression ofΦ(x, y) is given by

Φ(x, y) = eAi(x−Di)eAi−1(Di−Di−1)

· · · eAj+1(Dj+2−Dj+1)eAj(Dj+1−y),

Di ≤ x ≤ Di+1, Dj ≤ y ≤ Dj+1 (13)

for i, j ∈ {0, 1, . . . ,m − 1} such that i > j, and

Φ(x, y) = eAi(x−y), Di ≤ y ≤ x ≤ Di+1 (14)

for any i ∈ {0, 1, . . . ,m − 1}. We must understand (13) as
Φ(x, y) = eAi(x−Di)eAi−1(Di−y) if j = i − 1. See Fig. 1 for the
case of m = 3. It should be noted that Φ is continuous, but not
differentiable on the lines represented by x = Di or y = Di for
some i ∈ {1, . . . ,m − 1}.

Consider the following transformation:

wi(x, t) = ui(x, t)− k⊤

i Φ(x, 0)X(t)

−

m
j=1

 φj(x)

0
k⊤

i Φ(x, y)bjuj(y, t)dy (15)
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