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a  b  s  t  r  a  c  t

Cardiovascular  diseases,  particularly  severe  stenosis,  are  the  main  cause  of  death  in  the  western  world.
The primary  method  of  diagnosis,  considered  to  be  the  standard  in the  detection  and  quantification
of  stenotic  lesions,  is a  coronary  angiography.  This  article proposes  a new  automatic  multiscale  seg-
mentation  algorithm  for the  study  of  coronary  trees that  offers  results  comparable  to the  best  existing
semi-automatic  method.  According  to the  state-of-the-art,  a representative  number  of  coronary  angiog-
raphy images  that  ensures  the  generalisation  capacity  of the algorithm  has  been  used. All these  images
were  selected  by clinics  from  an  Haemodynamics  Unit.  An exhaustive  statistical  analysis  was  performed
in  terms  of  sensitivity,  specificity  and  Jaccard.  Algorithm  improvements  imply  that  the  clinician  can  per-
form  tests  on  the  patient  and, bypassing  the  images  through  the  system,  can  verify,  in  that  moment,  the
intervention  of  existing  differences  in a coronary  tree  from  a previous  test,  in such  a  way  that  it  could
change  its  clinical  intra-intervention  criteria.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Cardiovascular diseases (CVD) are the number one cause of
death globally. An estimated 17.9 million people died from CVDs
in 2015, representing 31% of all global deaths. Of these deaths, an
estimated 7.4 million were due to coronary heart disease and 6.7
million were due to stroke. Over three quarters of CVD deaths take
place in low- and middle-income countries. Out of the 16 million
deaths under the age of 70 due to non-communicable diseases, 82%
are in low and middle income countries and 35% are caused by CVD
[1].

The most used diagnostic technique at present, and that which
is used for evident symptoms of cardiovascular problems, is an
angiography obtained through catheterisation [2,3]. This procedure
is recommended in patients with a high probability of coronary
heart disease. In these cases, cardiologists analyse the angiography
images, establish a diagnosis for the disease and even anticipate its
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prognosis, depending on the severity and extent of the coronary
disease.

Due to the importance of this type of test and its implications
on public health, researchers such as O’Brian and Ezquerra [4] have
been working on the automatic segmentation of the coronary tree
since the mid  1990s. Since then, a large number of processing tech-
niques have increased to efficiently segment the coronary tree, as
can be verified in the comparative studies of Kirbas and Quek [5],
published in 2004, and the studies of Novoa et al. [6], published in
2011. In this last study, it was  concluded that the algorithm with
the best results was that of Poon et al. [7]. However, this technique
has the downside of a very long execution time, to the order of sev-
eral minutes for an average sized image, and its semi-automatic
nature requires human intervention. What is more, semi-automatic
arterial segmentation has the issue of the existence of an inter-
and intra-observer variable. Even though it is a value that can be
minimised, as has been documented in several studies and publi-
cations, it is not possible to completely eliminate it [8]. Lastly, the
efficiency of these semi-automatic algorithms is completely depen-
dent on the experience of a clinical expert, and largely eliminates
the generalisation capacity of this algorithm.
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This article presents a new coronary tree segmentation tech-
nique that is completely automatic and efficient, in terms of
execution time. Its results surpass those obtained by Poon et al. [7]
in precision, a state of the art technique that was previously men-
tioned, and, according to several state of the art reviews, which
currently offer the best results for this type of medical image.

2. Background

In the field of processing coronary angiographies, segmentation
algorithms have to solve very complex problems, such as the noise
that angiography capture devices register, the spontaneous move-
ments of the patient and of his/her internal organs, bifurcations,
different level blood-vessel crossings, stenotic lesions, etc. Due to
all of this, it is very difficult to develop a technique that behaves
appropriately in all of these situations.

Over the years, may  studies have come into existence that
present algorithms whose aim is to offer the user a reliable seg-
mentation based on the data entry set within a reasonable period
of time. However, many methods offer only one of these two char-
acteristics. An example of this fact are Random Walk methods [9],
which are one of the fastest, in general terms, of all the devel-
opments at present. However, they suffer from problems of false
positives and are unable to completely ignore the noise of the input
image. On the other hand, the active contour methods [10] are less
sensitive to random noise, but the required execution time is much
longer than that of the multiscale methods. Algorithms based on
artificial neuron networks [11,12] have experienced a significant
gap in terms of new publications, given their low precision in coro-
nary angiographies, whose quality is generally far from optimal.

In the state of the art review, approximately 50 articles were
analysed, based on different focuses and methodologies. Based on
these reviews performed by different research groups, we  con-
cluded that, among all the algorithms published up until now,
Poon’s multiscale method [7] provides the highest sensitivity
and specificity values for the segmentations performed using it.
Furthermore, this algorithm has been used to carry out arterial
segmentation in different medical imaging modalities related to
angiographies, such as in the case of angiographies of vessels in
the retina or in the recording of cerebral vessels [13]. Therefore, it
will be used as a reference point to explain our automatic multi-
scale algorithm proposal for the segmentation of vessels (vascular)
in coronary angiography imaging. Its greatest deficiency is relative
to the processing times, since it is a semi-automatic method.

The Poon et al. method [7], used as a starting algorithm, is
based on multiscale filters to obtain the cost associated with
each pixel of the image. The user must indicate the starting
and end point of a vascular segment, and the algorithm auto-
matically selects the required intermediate points between both
points to outline the vessel. To do so, it uses an exhaustive
graphical search based on Dijkstra’s algorithm [8]. This method
also offers the added control of manual segmentation, allow-
ing the user to only segment the area of the angiography
that he/she desires. This is particularly useful when the doc-
tor wishes to focus his/her analysis on a specific area of the
image.

The first step of the method is to create the cost matrix of the
angiography. Optimization in Poon’s et al. is achieved by minimiz-
ing the cumulative cost function at each (x, y, z) node. Thus, in this
approach the cost associated from a node of a vascular segment
q = (x, y, z) to a neighboring node p = (x′, y′, z′) is calculated as:

Cost(q, p) = w1Cv(p) + w2CEv(q, p) + w3CIe(p)

+w4CR(q, p) + w5CS(q, p)

This will be used retrospectively to choose the minimum cost
path between the two points that the user selects as the start and
end points of a vascular segment. The justification for selecting the
minimum cost path is simple: the filters are designed to offer the
minimum response inside the vessels and a greater response on
what is considered the background. The filters that are used in this
phase are the multiscale vessel enhancement filters described by
Frangi et al. [14], Koller et al. [15] and several structural filters.

In the case of the former, developed by Frangi et al., the noise
and background of the image are suppressed while the vessels are
enhanced, in accordance with the following function:
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the filter and have values of 0.5 and 0.3, respectively.
The second filter is that of the direction, work of Koller et al. [15].

This algorithm is based on a non-linear combination of linear filters.
It searches for elongated, symmetrical and linear structures, such
as the minimisation of response at the edges of these structures.
This filter creates highly intense coloured lines in the middle of
these structures, along their entire length. Its value is calculated
according to the following mathematical expression:

CEv(q, p) = 2
�

arccos
Ev(p) · Ev(q)
|Ev(p)||Ev(q)|

with Ev(i) being the eigenvector with the kth smallest magnitude
of the Hessian matrix in point i.

Lastly, the structural filtering must be mentioned, which tends
to favour the pixels that are found in the middle of the vessels. To
do so, it uses different operators, such as the Canny edge detector
[16], the gradient of the image [17] and the Laplacian of Gaussian
Matrix [18]. The average response of these three operators is called
R(x, y). Representing r as the scale, for each q = (x, y, r) analysed, its
Ev(x, y, r) and R(x, y) are combined to thus define a marker of how
centred the point in question is inside of a vessel. This filter then
calculates the R(x, y) value at N points, including these points and
all the adjacent and normal (PR = (xi, yi);i = 1, 2, . . .,  N) to the node
q. The final cost of the structural filter is defined this way, in order
to minimise a response to noise, such as:

CIe(q) = 1 −
(

1
N

) N∑
i=1

R(PR)

In addition to these three filters, the algorithm uses two restric-
tions to detect the best path between the two points. The first is the
spatial restriction, which sums a small constant value to the cost of
the path for each additional pixel added to it. This way, the distance
between the points on the path tends to be smaller, thus avoiding
the see-saw effect on the edges of the vessels. For example, the cost
that this restriction applies to a path that starts at point q = (x, y, r)
and that ends at point p = (x′, y′, r′) is:

CS(q, p) =
√

(x − x′)2 − (y − y′)2

The algorithm also applies a radius restriction, which penalises
the paths on which sudden radius changes appear. This occurs for
two reasons. The first of these is that the vessel enhancement filter
is sensitive to noise and that it is not reliable to base the radius cal-
culation of the arteries on only the output of this filter. The second
is that the radius of the vessels does not tend to suddenly change,
unless there is a strong stenosis. Therefore, adding this restriction
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