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a b s t r a c t

We investigate the problem of synchronization in a network of homogeneous Wilson–Cowan oscillators
with diffusive coupling. Such networks can be used to model the behavior of populations of neurons in
cortical tissue, referred to as neural mass models. A new approach is proposed to address conditions for
local synchronization for this type of neural mass models. By analyzing the linearized model around a
limit cycle, we study synchronization within a network with direct coupling. We use both analytical
and numerical approaches to link the presence or absence of synchronized behavior to the location of
eigenvalues of the Laplacian matrix. For the analytical part, we apply two-time scale averaging and the
Chetaev theorem,while, for the remaining part,weuse a recently proposednumerical approach. Sufficient
conditions are established to highlight the effect of network topology on synchronous behavior when the
interconnection is undirected. These conditions are utilized to address points that have been previously
reported in the literature through simulations: synchronization might persist or vanish in the presence
of perturbation in the interconnection gains. Simulation results confirm and illustrate our results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Synchronization is a ubiquitous phenomenon observed in
diverse networks of interconnected subsystems that arise in
neuroscience, physics, biology, social networks, and many more.
Synchronization occurs when the states or outputs of subsystems
converge to the same behavior, and can be considered as the
asymptotic stability of error vectors between the state (or output)
vectors of two or more subsystems. Approaches for the study of
synchronization can be categorized into two groups: global and
local. Lipschitz (DeLellis, di Bernardo, & Russo, 2011), passivity
(Arcak, 2010), dissipativity (Stan & Sepulchre, 2007), and semi-
passivity (Steur, Tyukin, & Nijmeijer, 2009) properties have been
employed to study global synchronization. In these approaches,
the subsystems in the network are required to satisfy a specific
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dissipation or passivity property. In some applications, it may be
challenging to demonstrate that these properties are satisfied, and
so local approaches are a useful alternative.

In local approaches, a linearization technique is utilized that
indicates that synchronization in a network of oscillators can
be analyzed via the well-known master stability equation (MSE)
in which the eigenvalues of the Laplacian matrix play a crucial
role (Pecora & Carroll, 1998). In order to study the influence of
interconnection gains on synchronization, the stability of the MSE
has previously been evaluated using numerical approaches, which
are computationally intensive. However, a possible way to reduce
computational effortwould be to combine analyticalmethodswith
numerical tools. In Yu, Chen, and Cao (2011), synchronization of a
network of oscillators with nonlinear dynamics was investigated
analytically. Recently, Shafi, Arcak, Jovanović, and Packard (2013)
proposed a framework to study synchronization in a network of
oscillators by combining both analytical and numerical methods,
allowing one to study the effects of interconnection gains on
synchronization.

Synchronization of neural networks is thought to play a key role
in information integration and processing. Synchronization of dis-
tributed brain regions has been speculated to play an important
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role in cognition (Rodriguez et al., 1999). Therefore, understand-
ing the mechanisms that underpin synchrony in the brain is im-
portant. The Wilson–Cowan model (Wilson & Cowan, 1972) is of
great interest since it is parsimonious, as it describes the activity of
both excitatory and inhibitory populations of neurons and repro-
duces self-sustained oscillations observed in electroencephalog-
raphy (EEG) signals. In particular, local synchronization of the
Wilson–Cowanmodel has been investigated in the literature using
the center manifold theorem (Hoppensteadt & Izhikevich, 1997)
and the notion of phase response curves (Daffertshofer & vanWijk,
2011). These approaches only deal with weak couplings. However,
synchronization can be observed inWilson–Cowan networks with
intermediate or strong coupling.

It is known that two factors have a significant impact on
presence or absence of synchronization in the complex network:
dynamical models of network nodes and network topology. In
particular, investigating the effect of the latter has attracted much
research and it is still an ongoing problem (Belykh, Belykh, &
Hasler, 2006; Porfiri &Di Bernardo, 2008).More recently, this point
has been explored in neuroscience using a computational model
of the brain (Terry, Benjamin, & Richardson, 2012). It has been
observed that, in the network of oscillators, removing or adding
interconnections between nodes can lead to the disappearance or
persistence of synchronous activity in the system. However, all
these observations have been obtained only by simulations.

In thismanuscript, we demonstrate that the framework of Shafi
et al. (2013) can be adapted to study local synchronization in
a network of Wilson–Cowan oscillators with arbitrary coupling
strengths. As far as we are aware, this is a new result. Our
contribution is fourfold. First, the Wilson–Cowan model does not
fit the general model considered in Pecora and Carroll (1998),
Shafi et al. (2013) and Yu et al. (2011). As a consequence, the
analysis is different. Second, the Wilson–Cowan networks do not
synchronize for all coupling gains. Therefore, we had to use an
instability result for the linearized model based on the Chetaev
theorem to develop a novel proof. This is different from the results
in Shafi et al. (2013), where local synchronization was shown for
both weak and strong coupling. Furthermore, our results are also
different from Yu et al. (2011), where the authors presented a
sufficient condition for synchronization that is conservative for
our network. Third, we considered the directed coupling between
oscillators in the network and our results are general. Fourth, we
present sufficient conditions that relate the role of perturbations in
the network topology, thereby explaining robustness and absence
of synchronization.

The paper is organized as follow. In Section 2, we briefly
introduce the Wilson–Cowan model of a single population as
well as the network of such models with non-identical nodes. In
Section 3, we formulate the problem for a more general network
with identical nodes. In Section 4, the synchronization conditions
are established for the network. Robustness of synchronization
is analyzed in Section 5. Simulation results and conclusions are
presented in Sections 6 and 7, respectively.
Notation. Throughout this paper, In denotes the identity matrix
in Rn×n. The Kronecker product is denoted by ⊗. For a complex
variable, vector or matrix, ℜ(·) and ℑ(·) stand for the real and
imaginary parts. For a matrix A ∈ RN×N , {λi(A)}Ni=1 stands for
ordered eigenvalues of matrix A such that λmin = λ1 and ℜ(λ1) ≤

ℜ(λ2) ≤ · · · ≤ ℜ(λN). The operator diag(·) constructs a block
diagonal matrix from its arguments. [A]i denotes the ith row of
matrix A ∈ RN×M .

2. Wilson–Cowan model

Neural mass models describe the relationships between
neural populations. Lumped parameter neural mass models are

constructed by interconnecting neural populations that generate
some realistic EEG patterns like alpha or beta waves. In this class
of model, the dynamics of each neural population can be described
by a linear first-order system coupled with a sigmoid non-
linearity that converts the averagemembrane potential of a neural
population into an average pulse density of action potentials. This
model is given by

ẋs = −αxs + f (ρ + I) , (1)

where xs ∈ R describes the average membrane potential of a
single population that can be either excitatory xE or inhibitory xI .
The parameter α is the population time constant and ρ denotes
the sensory input or input from other neurons. The inputs from
neighboring or distant populations are represented by I . fi : R → R
is a sigmoid function given by

fi

θj


=
1

1 + exp

−riθj

 , ri > 0, j = 1, 2. (2)

The neural mass model of Wilson and Cowan (1972) charac-
terizes the behavior of spatially localized neural populations via a
lumped parameter description. This model contains an excitatory
and an inhibitory neural population that are coupled together and
are considered as a single ‘‘node’’. TheWilson–Cowanmodel is de-
scribed by

ẋi = −Λixi + Fi

Υi + Ξixi + Ixi


, (3)

where xi = [xEi , xIi ]
T

∈ R2 is a stack vector of the average
membrane potentials of the excitatory and inhibitory populations,
xEi and xIi , respectively. The vector Ixi = [IEi , IIi ]

T
∈ R2 represents

the exogenous inputs that include the input from neighboring
populations and/or external inputs such as controller inputs. The
matricesΛi,Υi,Ξi are determined by

Λi =


αEi 0
0 αIi


, Υi =


ρEi
ρIi


, Ξi =


ai −bi
ci −di


, (4)

where ai, bi, ci, di are positive constants and referred to as synaptic
gains. The nonlinear function Fi(θ) : R2

→ R2 is described by

Fi (θ) =

fi (θ1) , fi (θ2)

T
. (5)

In order to interconnect Wilson–Cowan oscillators, it is
assumed that the excitatory neural population of one node is
coupled to the excitatory neural population of another node. The
same coupling configuration is assumed for connection between
inhibitory populations in two distinct nodes. In other words, if
a node i is coupled to a node j with coupling gain wij, then
the excitatory neural population and inhibitory neural population
in node i are coupled to the excitatory and inhibitory neural
populations in node j with the coupling gains wij and −wij,
respectively.We note that this assumption is somewhat restrictive
as these two interconnections can have different coupling gains
in general (Hoppensteadt & Izhikevich, 1997; Ueta & Chen,
2003). Although the interconnection between nodeswas originally
considered as a direct coupling, it has been proposed that diffusive
coupling can be utilized to control oscillatory behaviors and, in
particular, synchrony behavior of populations (Ueta & Chen, 2003).

Now, consider a network with N Wilson–Cowan Oscillators
interconnected with diffusive coupling. In this case, the dynamics
of each node is represented by

ẋi = −Λxi + Fi


Υi + Ξixi + Ds

N
j=1

wij(xj − xi)


, (6)

where Ds = diag(1,−1) due to assuming the interconnections
are restricted to being excitatory–excitatory and inhibitory–
inhibitory.
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