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a b s t r a c t

This paper derives a recursive prediction error identification method based on the Hammerstein model
structure. The convergence properties of the algorithm are analysed by application of Ljung’s associated
differential equationmethod. It is proved that the algorithm can only converge to stable stationary points
of the associated ordinary differential equation. General conditions for local convergence to the true
parameter vector are given, and the cases with piecewise linear and polynomial nonlinearities are treated
in detail. The derived identification method is illustrated in a numerical study that treats identification of
a subsystem of a cement mill.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper recursive identification of the single-input–single-
output (SISO) Hammerstein model is considered. Identification of
Hammerstein models is a well studied subject. A common ap-
proach is to transform the Hammersteinmodel into a linearmodel,
using overparametrization, see e.g. Chang and Luus (1971). If the
noise is correlated, instrumental-variable methods can be used
to construct a consistent estimator (Stoica & Söderström, 1982).
In Boutayeb, Aubry, and Darouach (1996) overparameterization
is combined with pseudo-inverse techniques to construct a re-
cursive estimator for the original parameters. Another approach
is the (non-recursive) iterative method (Narendra & Gallman,
1966), for which the convergence properties are studied in Bai
and Li (2004). Common for all these methods is that the static
nonlinearity is assumed to be a linear combination of known basis
functions. In Chen (2004) and Zhao and Chen (2006), a nonpara-
metric model is used for the nonlinearity and a consistent estima-
tor is constructed. However, the method only works if the input is
white, which is restrictive in practice.

The algorithm of the present paper was previously presented
in Mattsson and Wigren (2014), and is based on direct optimiza-
tion of a SISO Hammerstein model, as in Ding, Liu, and Liu (2011)
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and Ding, Xinggao, and Chu (2013). By not using overparameteri-
zation accuracy can be improved. The method uses a static nonlin-
earity that is expressed as a sum of basis functions. The algorithm
avoids the computational complexity associated with e.g. particle
filtering.

The main contribution of the paper is an analysis of the
algorithm with Ljung’s associated differential equation method
of Ljung (1977) and Ljung and Söderström (1983). That method
ties the convergence of the recursive identification algorithm to
the stability of the associated ordinary differential equation (ODE).
More specifically, local convergence of the algorithm follows if the
ODE is locally stable, and global convergence is implied if the asso-
ciatedODE is globally Lyapunov stable. Conditions underwhich the
algorithm is guaranteed to converge are established. An analysis of
the case where the system is in the model set proves local conver-
gence to the true parameter vector under relatively mild assump-
tions. To illustrate the performance in non-ideal situations where
the system to be identified is not in the model set, identification of
a cementmill subsystem is simulated. The results indicate that the
algorithm operates well also in such practical situations.

The paper is organized with development of the model and
algorithm in Sections 2 and 3. The convergence analysis appears
in Sections 4 and 5 with proofs in the appendices. The cement
mill based numerical example is treated in Section 6, followed by
conclusions in Section 7.

2. The Hammerstein model

The model considered here is described by

ŷ(t, θ) =
B(q−1)

A(q−1)
f (θn, u(t)) = θ̄Tl ϕ(t, θ) (1)
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where u(t) is the input signal, ŷ(t, θ) is the output of themodel and
q−1 denotes the backward shift operator. The polynomials A(q−1)
and B(q−1) are given by

B(q−1) = b1q−1
+ · · · + bnbq

−nb (2)

A(q−1) = 1 + a1q−1
+ · · · + anq−na . (3)

The parameter vector θ̄ is partitioned as

θ̄ =

θ̄Tn θ̄Tl

T (4)

θ̄l =

a1 . . . ana b1 · · · bnb

T
, (5)

where θ̄n are the parameters of the nonlinearity, and

ϕ(t, θ) = [−ŷ(t − 1, θ) · · · − ŷ(t − na, θ)

f (θn, u(t − 1)) · · · f (θn, u(t − nb))]
T.

As in Ding et al. (2011) and Mattsson and Wigren (2014), the
static nonlinearity is considered to be a linear combination of basis
functions, so that

f (θn, u) =

nk
i=1

kifi(u) = θ̄Tn F(u), (6)

θ̄n =

k1 · · · knk

T
, (7)

F(u) =

f1(u) · · · fnk(u)

T
. (8)

A bias can be included by setting f1(u) = 1.
Because of the cascade structure in (1), it is not possible to

separate the gain of the linear block from the gain of the static
nonlinearity. Therefore, it is assumed that one element in the
vector θ̄ is fixed, and known beforehand. The vector θ of unknown
parameters is then given by

θ = Ioθ̄ (9)

where Io is the matrix that removes the row corresponding to the
fixed parameter.

3. The recursive identification algorithm

In this section the recursive prediction error algorithm (RPEM)
presented inMattsson andWigren (2014) is described. It is derived
by minimization of the criterion

V (θ) =
1
2
E ε2(t, θ), (10)

where E is the expectation operator, ε(t, θ) = y(t) − ŷ(t, θ) is
the prediction error, and y(t) is the measured output signal of the
plant. In order to perform the derivation, the negative gradient,
ψ(t, θ), of ε(t, θ) with respect to the parameter vector is needed.
Let

ψ̄l(t, θ) =


d
dθ̄l

ŷ(t, θ)
T

=
1

A(q−1)
ϕ(t, θ) (11)

ψ̄n(t, θ) =


d
dθ̄n

ŷ(t, θ)
T

=
B(q−1)

A(q−1)
F(u(t)) (12)

ψ̄(t, θ̄ ) =

ψ̄T

n (t, θ) ψ̄T
l (t, θ)

T
. (13)

The negative gradient, ψ(t, θ), is then given by

ψ(t, θ) = Ioψ̄(t, θ), (14)

cf. (9). In order to ensure that the estimated linear dynamic block is
stable in each step of the RPEM, a projection algorithm is needed.
First define

Ds =


θ

 1
A(q−1)

is asymptotically stable

. (15)

It must also be ensured that the estimates stay in a compact
set (Ljung & Söderström, 1983). Therefore, let DM be a compact
subset of Ds. Then the following projection algorithm can be used
to ensure that θ̂ (t) stays in DM ,
θ̂ (t)


DM

=


θ̂ (t) if θ̂ (t) ∈ DM

θ̂ (t − 1) otherwise
. (16)

The recursive identification algorithm of Gauss–Newton type
(Ljung & Söderström, 1983; Mattsson &Wigren, 2014), is then

ε(t) = y(t)− ŷ(t)

R(t) = R(t − 1)+ γ (t)(ψ(t)ψT(t)− R(t − 1))

θ̂(t) =


θ̂ (t − 1)+ γ (t)R−1(t)ψ(t)ε(t)


DM

(17)

ϕ(t + 1) = [−ŷ(t) · · · ŷ(t − na + 1)

f (θ̂n, u(t)) · · · f (θ̂n(t), u(t − nb + 1))]T

ŷ(t + 1) =
ˆ̄θ
T

l (t)ϕ(t + 1)

ψ(t + 1) = Io


B̂(q−1)

Â(q−1)
F(u(t + 1))

1

Â(q−1)
ϕ(t + 1)

 .
Here θ̂ (t) is the parameter estimate.

4. Convergence analysis

In Ljung (1977) it was shown how the algorithm in Section 3
can be related to the following ODE:

d
dτ
θD(τ ) = R−1

D (τ )fA(θD(τ )) (18)

d
dτ

RD(τ ) = GA(θD(τ ))− RD(τ ) (19)

where

fA(θ) , lim
t→∞

Eψ(t, θ)ε(t, θ) (20)

GA(θ) , lim
t→∞

Eψ(t, θ)ψT(t, θ), (21)

for a fixed θ . In order to use the associated ODE approach, it is
required to represent the RPEM on state-space form, this is per-
formed in Section 4.1. In Section 4.2 conditions on data generation
that ensure the applicability of the results in Ljung (1977) are pre-
sented, while the corresponding theorems are presented in Sec-
tion 4.3. This provides the foundation for the detailed analysis of
the Hammerstein identification algorithm that follows in Sections
4.4–4.5. In these sections conditions that ensure that the true pa-
rameter vector is a possible convergence point are given. This re-
quires that detailed conditions on the parameterization and signals
are introduced, as in e.g. Wigren (1994). In particular this provides
new insight on why it is important to excite the system well in
amplitude as well as in frequency, cf. Wigren (2003). Finally, the
convergence analysis is summarized in Section 4.6.

4.1. State-space representation of the RPEM

In this section the algorithm in Section 3 is reformulated in a
way that corresponds to the general structure in Ljung (1977).

Lemma 1. In the RPEM (17), ŷ(t) and ψ(t) can be generated by a
linear time-variant system on the form

ξ(t + 1) = A(θ̂(t))ξ(t)+ B(θ̂(t))z(t) (22)
ŷ(t) ψT(t) y(t)

T
= C(θ̂(t − 1))ξ(t). (23)
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