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a b s t r a c t

This paper considers the output controllability of autonomous linear control systems that are subject
to non-negative input constraints. Based on the evaluation of the geometric properties of the system,
necessary and sufficient conditions are proposed for the positive output controllability of continuous linear
time invariant systems. To aid in the practical evaluation of positive output controllability, additional
sufficient conditions are derived for which efficient numerical techniques exist. These conditions are
evaluated over a set of numerical examples which support the theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The property of controllability, introduced by Kalman, Ho, and
Narendra (1962), evaluates the ability of a dynamic system to
have its state driven from any initial state to any final state in
a finite amount of time. The aim of studying the controllability
properties of a dynamic system is to determine if a controller can
be applied to generate a desired state space behaviour. For linear
time invariant (LTI) systems, necessary and sufficient conditions
have been identified (Hespanha, 2009; Kalman et al., 1962). For
nonlinear time invariant systems, linearisation has been used to
obtain sufficient conditions for local controllability (Sastry, 1999).
In addition, sufficient conditions have been proposed using Lie
algebra for local controllability and/or the global controllability of
some nonlinear systems (Sastry, 1999; Sussmann, 1987).

When constraints are imposed on either the system states or
inputs, the effect of the constraints can alter the controllability
conditions. This paper focuses on non-negative input constraints,
which are motivated by engineered systems such as non-
prehensile mechanisms (Lynch & Mason, 1999), cable robots
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(Lau, Oetomo, & Halgamuge, 2011; Oh & Agrawal, 2005), one
way valves (Willems, Heemels, De Jager, & Stoorvogel, 2002)
and the antivibration control of pendulum systems (Saperstone
& Yorke, 1971). This class of constraints have therefore been
widely investigated resulting in different necessary and sufficient
conditions for controllability being identified for continuous
(Brammer, 1972; Heymann & Stern, 1975; Saperstone & Yorke,
1971; Yoshida & Tanaka, 2007) and discrete (Evans & Murthy,
1977) LTI systems. Additionally, sufficient conditions for local
positive controllability of nonlinear systems have been obtained
(Brammer, 1972; Goodwine & Burdick, 1996).

It is worthwhile to note that controllability is defined for states
instead of outputs. In most engineering applications, tasks are
defined for outputs, whose dimension can be much lower than
that of the state. One example is the control of a multi-link cable
driven manipulator, where the task is typically defined in terms
of end effector pose, rather than the joint positions and velocities
which can define the system’s state (Lau, Oetomo, & Halgamuge,
2013). Under such a situation, it is natural to consider output
controllability (see for example, García-Planas & Domínguez-
García, 2013, Kreindler & Sarachik, 1964 and references therein).
In the evaluation of output controllability, necessary and sufficient
conditions for LTI systems are well established (Ogata, 2010). For
systems subject to non-negative input constraints, there are no
known results that consider output controllability.

In this paper, positive output controllability is defined for
continuous LTI systems. Necessary and sufficient conditions for
positive output controllability are derived. To more efficiently
verify positive output controllability, some geometric sufficient
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conditions are proposed. These conditions are shown to be
necessary and sufficient for two dimensional systems. The
conditions are evaluated on numerical examples to support the
theoretical results.

2. Preliminaries

2.1. Notation

Denote the set of real numbers as R, the complex numbers
as C, the square identity matrix with m rows as Im and the zero
matrix with m rows and n columns as 0(m×n). If the vector x =

[x1 . . . xn]T ∈ Rn satisfies xi > 0 (xi ≥ 0) for all i ∈ {1, . . . , n},
then x is said to be positive (non-negative) and is denoted by
x > 0 (x ≥ 0). For any vectors x, y ∈ Rn, the inner product is
denoted ⟨x, y⟩ = yTx. For the vectorx ∈ Cn, the complex conjugate
is denoted x̄ and an orthogonal vector x⊥.

Let an unforced continuous LTI system be given by

ẋ = Ax, x(0) = x0 ∈ Rn, (1)

where A ∈ Rn×n. The unforced response of the system (1) is given
by x(t) = eAtx0. The eigenvalues of A are denoted by the set
Λ(A) = Λr(A) ∪ Λc(A), where Λr(A) ⊆ R represents the i purely
real eigenvalues and Λc(A) ⊆ C the remaining j eigenvalues such
that i + j = n. Let the i real eigenvalues of Λr(A) be defined such
that the k ≤ i distinct real eigenvalues λ are arranged in the form
λ1 > · · · > λk ∈ Λr and let the l ≤

j
2 distinct real component

ρj of the complex eigenvalues be arranged in the set Rc(A) ⊂ R
such that ρ1 ≥ · · · ≥ ρl ∈ Rc for j ∈ {1, . . . , l}. The corresponding
eigenvectors for the eigenvalue λ is given by ε(λ) and the set of all
eigenvectors for A is given by the eigenspace E(A).

2.2. Geometric cone theory

Definition 1. A set X ⊆ Rn is said to be a cone if for all x ∈ X and
α ≥ 0, αx ∈ X. The set is a convex cone if it is a cone and for all
x, y ∈ X, x + y ∈ X (Luenberger, 1968).

Definition 2. The extreme rays of the cone X are the rays that
cannot be expressed as a positive linear combination of other rays
in X (Barker, 1981).

Remark 1. Extreme rays form a positive linearly independent set
that can provide a description of X. An alternative description of
X can be provided using the matrix G ∈ Rq×n, where cone(G) =

{x ∈ Rn
| Gx ≤ 0}. ⃝

Definition 3. Let K = [k1 . . . km] ∈ Rn×m where n and
m are positive integers. The image (or span) of the matrix K is
defined as the set Im (K) :=


x ∈ Rn

| x =
m

i=1 αiki, αi ∈ R

.

The positive span of the matrix K is defined as the set span+ (K) :=
x ∈ Rn

| x =
m

i=1 αiki, αi ≥ 0

.

Definition 4. Let X ⊆ Rn. The negative polar cone of the set X,
denoted X−, is the set of all y ∈ Rn such that ⟨y, x⟩ ≤ 0 ∀ x ∈ X
(Luenberger, 1968).

The negative polar cone and the positive span of a matrix always
form convex cones by Definition 1.

2.3. Positive invariance of cones

Let A ∈ Rn×n be a given state matrix of (1) and let λ represent
an eigenvalue of A. The following definitions hold for λ and A.

Definition 5. A cone X is positively invariant with respect to
system (1) if ∀ t > 0, eAtX ⊆ X (Castelan & Hennet, 1991).

Definition 6. If a subspace Y ⊆ Rn is positively invariant with
respect to (1) then the subspace is said to be A-invariant and for
all x ∈ Y, Ax ∈ Y (Hespanha, 2009).

Definition 7. The operating subspace O(λ) is the largest A-
invariant subspace such that for all x ∈ O(λ), there exists matrices
M(t),N(t) ∈ Cn×n such that eAtx =


eλtM(t) + eλ̄tN(t)


x.

Remark 2. The operational subspace O(λ) is equal to ε(λ) if λ is
real and rank(ε(λ)) = m, where m is the algebraic multiplicity of
λ. If λ is complex, then O(λ) is the plane of oscillation and in the
case of defective matrices it is given by the span of ε(λ) and the
generalised eigenvectors. ⃝

Definition 8. Let T ⊆ Rn be a positively invariant cone with
respect to (1). The T -dominant eigenvalue is the eigenvalue
λ∗(A, T ) with largest real component such that ∃ a positively
invariant cone T1 ⊆ (T ∩ O(λ∗)) with dimension greater than
0. The T -dominant eigenvectors ε∗(A, T ) are the corresponding
eigenvectors of λ∗. The T -dominant eigencone η(A, T ) is given
by the intersection T and the T -dominant eigenvectors such that
η(A, T ) = T ∩ ε∗(A, T ).

Definition 9. Let P ∈ Rp×n, where p ≤ n, be a projection matrix.
The set of P-dominant eigenvectors W(A, P) is given by the set
W(A, P) :=


ε ∈ E(A) | ∃v ∈ Rp s.t. ε = ε∗(A, P (P, v))


,

where P (P, v) is the smallest positively invariant cone containing
PTv and ε∗ is as given in Definition 8.

Remark 3. For a given positively invariant cone T , the T -
dominant eigenvectors correspond to the eigenvectorswith largest
corresponding eigenvalue that has a non-zero intersection of its
operating subspace with T . The P-dominant eigenvectors are then
the set of all possible T -dominant eigenvectors where T ⊆

Im(PT ). ⃝

Definition 10. A matrix H ∈ Rq×q is Metzler if its off-diagonal
terms are non-negative.

A cone X = cone(G) is positive invariant if it satisfies the
following result from Castelan and Hennet (1991, Proposition 2.1).

Proposition 1. Cone(G) is positively invariant for the unforced
continuous LTI system (1) iff ∃ a Metzler matrix H ∈ Rq×q such that
GA = HG.

3. Problem formulation

Let a continuous LTI system be described by the n dimensional
state x ∈ Rn, m dimensional input u ∈ Rm, p dimensional output
y ∈ Rp and system dynamics

ẋ = Ax + Bu, x(0) = x0, (2)
y = Cx, (3)

where A, B and C are matrices with appropriate dimensions.
The controllability property of (2) identifies if the input can be

used to drive the state from any initial state to any final state.
Formally controllability is defined as follows:

Definition 11. A continuous LTI system (2) is controllable if ∃ a
finite time τ , such that ∀ x0, xf ∈ Rn and T ≥ τ , ∃ an input
trajectory u(·) such that x(0) = x0 and x(T ) = xf (Sastry, 1999).
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