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a  b  s  t  r  a  c  t

The  present  study  proposes  the  noise  estimation  of  Magnetic  Resonance  Imaging  (MRI)  data  using
multi-objective  particle  swarm  optimisation  (MOPSO).  This  adaptive  noise  estimation  is based  on  the
maximisation  of  the  multiple  quality  measures,  which  enable  the algorithm  to  achieve  de-noising  along
with  enhancement  in  the  image  features.  The  paper proposes  two filtering  approaches  to  de-noise MRI
data.  In  first,  MOPSO  based  noise  estimation  is  followed  by  non-local  statistics  based  Kalman  filter,
whereas,  in  the  second  approach,  MOPSO  based  noise  estimation  is  followed  by  Linear  Minimum  Mean
Square  Error  (LMMSE)  filter.  The  impact  of  de-noising  on  segmentation  of MRI  data  has  also  been  studied,
for  this  purpose  enhanced  fuzzy  c-means  algorithm  has been  applied  on  filtered  MRI  data.  The de-noising
and  segmentation  performance  of  MOPSO-non  local  Kalman  filter  and  MOPSO-LMMSE  filters  has  been
evaluated  and  compared  with Wavelet  filter, Wiener  filter,  non-local  mean  filter,  standard  Kalman  and
standard LMMSE  filter.  The  proposed  noise  estimation  approach  followed  by  filtering  is giving better
de-noising  and segmentation  results  as  compared  to standard  filters  considered.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

MRI  is an important modality of medical imaging as far as
concern the structure of soft tissues, their details and disease
characterisation. The advantages of this imaging technique are its
non-ionization behaviour and better image quality with high tis-
sue contrast resolution. This imaging technique produces different
weighted images by varying in the sequences of radio frequency
(RF) pulses, and these weighted sequences can be used to diagnose
the various diseases [1,2]. However, the presence of artifacts and
noise in the MRI  data may  affect the perception of the radiologists.
Hence, an efficient de-noising as a pre-processing step should be
implemented [3].

Previously, many filtering algorithms have been proposed to de-
noise MRI  data [4,5]. The conventional Wiener filters [6] are simple
and process the local neighbourhood pixels. However, these filters
assume Gaussian rather Rician distributed noise and hence often
produce blur on resulting MRI  data. An alternative to conventional
Gaussian filtering, the approach based on Markov Random Field
has the capability to preserve the shape of transitions in fMRI stud-
ies [7]. Recently, Fabio Baselice et al. have exploited the Markov
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Random Field for de-noising and edge preservation of 3D MRI
data, and tunes the parameters by itself [8]. The transformation-
based de-noising method utilises Wavelet-based filter [9], which
has improved the visual appearance of diffusion-weighted MRI
data as it preserves the edges and reduces the blur. The non-local
means (NLM) filter [10] has shown elegant accuracy in preserv-
ing the edges, which averages the non-local pixels of the image
while considering the self-similarity property that determines the
weights. Further, the idea of NLM filter has been extended to other
de-noising methods as well [11,12].

The recent trends are toward statistical estimation based de-
noising approach for MRI  data, which utilises quasi-Monte Carlo
estimation has been instigated while considering local statistics of
MRI  data [13]. The maximum likelihood estimation method has
been implemented in a non-local manner to de-noise the MRI
data generated from multiple coils [14]. Jose V. Manjon et al. esti-
mated the noise level of the MRI  data followed by de-noising using
non-local principle component analysis (PCA) [11]. Further, lin-
ear minimum mean square error (LMMSE) based techniques are
another class of de-noising method and have the ability to produce
a greater de-nosing performance. S. Aja-Fernandez et al. proposed
iterative LMMSE  approach for signal estimation in MRI data [15].
This LMMSE  estimation based approach has been implemented on
the local statistics of the data. Later on, the LMMSE  approach has
been exploited for non-local statistics for the 3D MRI data to obtain
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enhanced performance [16]. Apart from LMMSE, other filters such
as patch based PCA filter have also used iterative approach [17].
These iterative filtering approaches assume the Rician distribution
of MRI  data at every iteration, however, the nature of resulting
data changes after each iteration. Further, signal estimation based
on non-recursive Kalman filter has been applied earlier to pho-
tographic images using local statistics for the enhancement of
contrast and de-noising [18]. This work has performed de-noising
without doing noise estimation, and hence, direct application of
this standard Kalman filter it is not found very suitable for the de-
noising of MRI  data. V. Brion et al. proposed the parallel Kalman
filter for real-time �-noise correction of diffusion tensor imaging
and High Angular Resolution Diffusion Imaging data [19]. Recently,
a modified Kalman filter has been used, where Markov random field
has been followed by standard Kalman filter to de-noise the image
[20].

The present paper implements MOPSO for noise estimation
followed by de-noising algorithms i.e. LMMSE  based filter and mod-
ified Kalman based filter. The present study suggested that the noise
need to be adaptively estimated in the process of filtering of MRI
data. The previous recursive filtering methods have assumed MRI
data as Rician distributed throughout all the iterations, however,
the Rician nature of MRI  data get modified after each iteration.
Hence, in case of recursive filtering, adaptive estimation of noise
after each iteration is primary requirement of the filtering. The
non-recursive filters also get benefited from proposed approach,
as MOPSO objectively maximizes the image quality parameters
to estimate the noise from MRI  data. Further, enhanced fuzzy
c-means segmentation algorithm [21] also shows better segmen-
tation results with proposed algorithms. The rest of the paper is
organized as follows. The next section describes the problem for-
mulation to estimate the noise. Section 3 formulates the non-local
Kalman filter to de-noise the MRI  data. Section 4 presents the
material and proposed algorithm along with its working. Section
5 demonstrates the experiment results, and finally, Section 6 con-
cludes the study.

2. Problem formulation

The complex-valued MRI  data is reconstructedfrom the inverse
Fourier Transform of k-space data and contains white Gaussian
noise [22]. The magnitude MRI  data follows the Rician distribution
[23], as computation of magnitude MRI  from complex-valued MRI
data is a non-linear mapping process. The magnitude signal, which
is the envelope of the complex signal can be expressed as follows:

M(x) =
∣∣A (x) + N(x)

∣∣ (1)

where A (x) is noise free amplitude data and N (x) = nRe (x) +
i nIm(x) is the complex white Gaussian noise having zero mean,
nRe: real component of N (x) and nIm: the imaginary components of
N (x). The probability density function (PDF) of M can be expressed
as Rician and represented as follows [24]:
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where �2
n is noise variance and I0(x) is the first kind 0th order Bessel

function. As there is no signal in the background of the MRI  data.
Hence, the PDF of Rician can be converted to the Rayleigh distribu-
tion in this region [25], which is computed by putting A = 0 in the
Eq. (2) and is expressed as follows:
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2.1. Estimation of noise variance

Previously, the estimation of noise variance (�2
n ) has been

derived while using the background (or non-signal region) of the
magnitude MRI, such as: the simple estimator based on method of

moments has been proposed [26], which is given as �̂2
n = 1
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where 〈 .〉 is sample estimator, M2 is second order moment, and
hence,
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is sample second order moment. Sijber J et al. has been
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is sample mean. In an another study, the noise has

been estimated for Rician distribution expressed as �̂2
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) [28]. Recently, a very efficient noise estima-

tion methods have been suggested, which is based on the maximum
distribution of sample local statistics [15], and is defined as �̂n ≈√
e

2 mode (�1ij ), where �1ij is local mean.
The above-discussed approaches were proposed for Rician dis-

tribution of MRI  data. However, in the process of filtering of MRI
data, the recursive filters modify its Rician distribution after the
first iteration, which results in non- Rician distribution of data in
subsequent iterations [15]. Hence, there is a need for adaptive re-
estimation of noise level after each iteration. Further, it is observed
that the different values of the constant factor

√
1
2 ≈ 0.707,

√
2
� ≈

0.797, and
√
e

2 ≈ 0.824 has been proposed in literatures [26–28] to
estimate the �̂n. The noise estimation was  based on the assump-
tion that there is no bias field present in the data, however, there
is the probability that bias field may  be present in real MRI  data. In
the view of above reasons, the present study proposes the MOPSO
based noise estimation approach.

Instead of a fixed value of constant factor in noise estima-
tion, MOPSO selects the value of this factor adaptively. Hence, the
expression of noise estimation can be defined as follows:

�̂opt ≈ k mode
〈
�̂1ij

〉
(4)

where MOPSO randomly initialises the constant factor k within the
search space and searches its optimum position for the maximiza-
tion of two  objectives i.e. image quality measures PSNR and image
anisotropy quality index (AQI) [29].

The proposed noise estimation approach is further helpful in
adaptive design of recursive as well non-recursive filters for de-
noising and enhancement of MRI  data effectively. The de-noising of
the image can be quantified in terms of structure similarity index
(SSIM), peak signal to noise ratio (PSNR) image quality based on
local variance (IQLV) [30] and AQI. Previously, image qualities PSNR,
AQI and IQLV has been found valuable to quantify the enhancement
and de-noising [31–33], hence, the present study has chosen to
adopt these image quality indexes. The higher value of these image
quality measures represents the lower noise and better enhance-
ment of the image.

2.2. Multi-objective particle swarm optimization (MOPSO)

MOPSO belongs to computational intelligence, which efficiently
addresses complex problems. Recently, optimization algorithms
have been used for the enhancement of MRI  data [31,34]. Particle
Swarm Optimization (PSO) is one of the most popular evolutionary
algorithm [35], developed by the R. C. Elbert and J. Kennedy [36].The
swarm of particles moves toward the optimum solution over the
search space using an iterative process. The particles keep tracking
its coordinates in the solution space, which is associated with the
objective function, called personal experience. Additionally, parti-
cles keep tracking the whole population for a global experience. In
every iteration, the movement of the particles depends on its previ-
ous direction vi(t), previous position xi(t), personal best experience
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