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a b s t r a c t

This paper studies the reach control problem (RCP) using affine feedback on simplices. The contributions
of this paper are threefold. First, we identify a new obstruction to solvability of the RCP using affine
feedback and provide necessary and sufficient conditions for occurrence of such an obstruction. Second,
for two-input systems, these conditions are formulated in terms of scalar linear inequalities. Third,
computationally efficient necessary conditions are proposed for checking the obstruction for multi-input
systems as feasibility programs in terms of linear inequalities. In contrast to the previous work in the
literature, no assumption is imposed on the set of possible equilibria, so the results are applicable to the
general RCP.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies the reach control problem (RCP) using affine
feedback on simplices. Given an affine systemdefined on a simplex
S, the objective in the RCP is to design a feedback controller
such that the trajectories of the closed-loop system leave S in
finite time through a prespecified facet, without first leaving it
through other facets. The RCP has been the subject of a great
deal of research due to its fundamental importance in controlling
a subclass of hybrid systems known as piecewise affine systems
(Bemporad, Ferrari-Trecate, & Morari, 2000; Habets, Collins, &
van Schuppen, 2006; Rodrigues, 2004). Piecewise affine systems
are state-based switched systems where each discrete mode has
a corresponding continuous-time affine dynamics. The discrete
modes correspond to polytopes in the state space. For piecewise
affine systems, reach control is at each mode to design a controller
that prevents transitions of the closed-loop system to undesired
discrete modes, and guarantees transition to the prespecified
desired mode. The RCP has found applications in different fields
including biomolecular networks (Belta, Habets, & Kumar, 2002),
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robot motion planning (Belta, Isler, & Pappas, 2005), aircraft
control (Belta & Habets, 2006), robotic manipulators (Martino &
Broucke, 2014), and aggressive maneuvers of mechanical systems
(Vukosavljev & Broucke, 2014).

The first approaches to solve the RCP in Habets and van
Schuppen (2004) and Roszak and Broucke (2006) lead to either
conservative sufficient conditions or bilinear inequalities that are
NP-hard. It later became evident that the (polytopic) set of possible
closed-loop equilibria in the simplex, OS , plays a crucial role
in solvability of the RCP. In particular, several computationally
efficient controller synthesis methods were devised by imposing
the assumption that OS is a face of S (Ashford & Broucke,
2013; Broucke, 2010; Broucke & Ganness, 2014). The results were
extended to polytopes in Helwa and Broucke (2013) and Lin and
Broucke (2011). In Lin and Broucke (2011), the problem was to
find a triangulation of the polytope and an associated piecewise
affine feedback to solve the RCP assuming the system has n − 1
inputs. The goal of Helwa and Broucke (2013) was to extend the
results of Broucke (2010) directly to polytopes by formulating
the so-called monotonic RCP. While all these works regard the
RCP, the specific problems solved and the approaches are very
different from those of this paper. In this paper, we focus on a sub-
problem of the RCP regarding the ability to assign a non-vanishing
affine function on OS . We use a numerical, optimization-inspired
approach whereas the previous works exploit system structure to
arrive at analytical conditions for solvability. Finally, a Lyapunov
theory for the RCP based on so-called flow functions (the analog of
Lyapunov functions for stability analysis) was presented in Helwa
and Broucke (2015). In this work, we do not assume existence of
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a flow function, and we are interested in necessary conditions for
solvability rather than the analysis of a given controller.

More closely related to this work, recent research has focused
on the existence and structure of the equilibria in the RCP (Semsar-
Kazerooni & Broucke, 2014). The notion of reach controllability
was introduced to characterize when closed-loop equilibria could
be pushed off the simplex using affine feedback. Notions of
topological and affine obstructions to solvability arose as necessary
conditions to the solvability of RCP (Ornik & Broucke, 2015). The
term ‘‘obstruction’’ is used in a similar spirit as in homotopy
theory—to extend a continuous (or affine) map on a simplicial
complex. The affine obstruction was studied in Ornik and Broucke
(2015) for the case of two- and three-dimensional systems.

Themain contributions of this paper are threefold. First, we for-
mulate necessary and sufficient conditions for existence of a non-
vanishing affine extension onOS . To the best of our knowledge, this
is the first result in the literature to present an obstruction to solv-
ability of the RCP using affine feedback formulti-input systems and
for the most general form of OS . Second, we propose graphically
motivated and computationally efficient necessary and sufficient
conditions for checking the obstruction on OS for two-input sys-
tems in terms of scalar linear inequalities. Finally, computationally
efficient necessary conditions are proposed for checking the ob-
struction on OS for multi-input systems as feasibility programs in
terms of linear inequalities.

2. Problem formulation

Consider an n-dimensional simplex S := co{v0, . . . , vn}, where
v0, . . . , vn are n + 1 affinely independent points in Rn. Without
loss of generality (w.l.o.g.) we assume v0 = 0. Define VS :=

{v0, . . . , vn} to be the vertex set of S. Let F0, . . . , Fn denote the
facets of S, where each facet is indexed by the vertex it does not
contain. We call F0 the exit facet. Let hj, j ∈ {0, . . . , n}, be the
unit normal vector of facet Fj pointing outside of the simplex. Let
0 denote the singleton set {0}. Define I := {1, . . . , n} and let I(x)
be the minimal index set among {0, . . . , n} such that x ∈ co{vi |

i ∈ I(x)}.
We consider an affine control system on S defined as

ẋ = Ax + Bu + a, x ∈ S, (1)

where A ∈ Rn×n, a ∈ Rn, B ∈ Rn×m, and rank(B) = m. Define
B := Im(B), the image of B. Let φu(t, x0) denote the trajectory of
(1) starting at x0 ∈ S, under control input u, and evaluated at time
instant t . Reach control theory studies the reachability of the exit
facet F0 from any initial point in S.
Reach control problem (RCP). Consider the affine system (1)
defined on a simplex S. Find an affine feedback u(x) := Kx + g ,
where K ∈ Rm×n and g ∈ Rm, such that for each x0 ∈ S there exist
T ≥ 0 and δ > 0 such that

(i) φu(t, x0) ∈ S, ∀ t ∈ [0, T ],
(ii) φu(T , x0) ∈ F0, and
(iii) φu(t, x0) ∉ S, ∀ t ∈ (T , T + δ).

Two necessary conditions for solvability of the RCP by affine
feedback are known (Habets & van Schuppen, 2004; Roszak &
Broucke, 2006). First, the velocity vector Ax+Bu(x)+amust point
inside the cone generated by S at points in the facets Fi, i ∈ I .
This requirement is known as the invariance conditions (Roszak &
Broucke, 2006). For x ∈ S, define the closed, convex cone

C(x) := {y ∈ Rn
| hj · y ≤ 0, j ∈ I \ I(x)}. (2)

Note that h0 never appears in (2) and C(x) = Rn for x ∈ S◦,
where S◦ represents the interior of S. Fig. 1 illustrates the cones
C(vi), i ∈ {0, 1, 2}, attached at the corresponding vertex vi to
describe allowable directions for the vector field at the vertices.

Fig. 1. A simplex S = co{v0, v1, v2} with vertices VS = {v0, v1, v2} and facets F0 ,
F1 , and F2 . The facet Fi, i ∈ {0, 1, 2}, is the convex hull of all vertices not including
vi . For each facet Fi , the unit normal vector pointing out of S is shown by hi . The
conesC(vi) are illustrated attached at each vi alongwith sample vectors yi ∈ C(vi).

Fig. 2. Two hypothetical scenarios in R3 with S = co{v0, v1, v2, v3}; (a) OS =

co{o1, o2, o3} is a simplex, and (b) OS = co{o1, o2, o3, o4} is a polytope but not a
simplex.

Here, e.g., since I(v0) = {0}, we have C(v0) = {y ∈ R2
| hj · y ≤

0, j ∈ {1, 2}}. We say that u(x) satisfies the invariance conditions
if

Ax + Bu(x) + a ∈ C(x), ∀x ∈ S. (3)

A second necessary condition for the feedback u(x) to solve the RCP
is that there are no closed-loop equilibria in S, i.e., Ax + Bu(x) +

a ≠ 0, for all x ∈ S. It was shown in Habets et al. (2006) and
Roszak and Broucke (2006) that these two necessary conditions
combined form a sufficient condition for solvability of RCP using
affine feedback. Closed-loop equilibria of (1) can only appear in the
affine space

O := {x ∈ Rn
| Ax + a ∈ B}. (4)

Therefore, we are interested in the feedback u(x) that denies any
equilibria in the set

OS := S ∩ O = co{o1, . . . , oκ}.

The intersection of a simplex S and an affine space O is either
an empty set or a κ̂-dimensional (compact and convex) polytope,
where 0 ≤ κ̂ ≤ n and κ̂ < κ . We note that dim(O) ≥ m. However,
asOS might not pass through the interior ofS, there is no guarantee
that dim(OS) ≥ m. We define VOS := {o1, . . . , oκ} to be the set
of vertices of OS . Two examples of the set OS are shown in Fig. 2.
Many papers in the literature study the RCP under the assumption
that OS is a κ̂-dimensional face of S. Due to the critical role of
the set OS in the second necessary condition, relaxing the above
assumptions and characterizing OS serve as major stepping stones
for solving the RCP. In this paper, we introduce an obstruction to
the RCP on the set of possible equilibria OS and, in contrast to the
above mentioned papers, study OS in its most general form.

For all x ∈ OS , the closed-loop vector field satisfies Ax+Bu(x)+
a ∈ B. Therefore, since OS ⊆ S, the existence of an affine map
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