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a b s t r a c t

The theory of observers is a basic part of classical linear system theory. The purpose of this paper is
to develop a theory of coherent observers for linear quantum systems. We provide a class of coherent
quantum observers, which track the observables of a linear quantum stochastic system in the sense
of mean values, independent of any additional quantum noise in the observer. We prove that there
always exists such a coherent quantum observer described by quantum stochastic differential equations
in the Heisenberg picture, and show how it can be designed to be consistent with the laws of quantum
mechanics. We also find a lower bound for the mean squared estimation error due to the uncertainty
principle. In addition, we explore the quantum correlations between a linear quantum plant and the
corresponding coherent observer. It is shown that considering a joint plant–observer Gaussian quantum
system, entanglement can be generated under the condition that appropriate coefficients of the coherent
quantum observer are chosen, and this issue is illustrated in an example. These results pave the way
towards observer-based quantum control.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Effective control requires that sufficient information about the
target plant is available to the controller. However, in many situa-
tions, full knowledge of the plant is not accessible and unknown
quantities may be estimated on the basis of the available infor-
mation (Ellis, 2002; Yamamoto, 2006). It is well established clas-
sically that the Kalman filter, which computes the conditional
expectations of the state variables of the plant, is a statistical ap-
proach to state estimation based on dynamical linear-Gaussian
models (Anderson & Moore, 1979). Likewise, in the emerging
field of coherent quantum control, information on the quantum
plant is also needed for efficacious control (Wiseman & Milburn,
2010). When the quantum plant is continuously monitored, the
Belavkin–Carmichael quantum filter may be used to compute con-
ditional expectations of plant variables (Belavkin, 1994; Bouten,
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van Handel, & James, 2007; Wiseman & Milburn, 2010). Mathe-
matically, the quantum filter computes a quantum conditional ex-
pectation onto a commutative subspace of output signals generated
by measurement processes. In the special case of linear quantum
stochastic systems, i.e. those for which certain conjugate variables
evolve linearly in the Heisenberg picture (as in linear quantum op-
tics; e.g., seeWiseman &Milburn, 2010, James, Nurdin, & Petersen,
2008), the quantum filter reduces to the Kalman filter.

As a step towards better understanding of fully quantum non-
commutative estimation and control, in this paper we extend
Luenberger’s approach (Luenberger, 1966) for observer design to
linear quantum stochastic systems, whose dynamics are described
by linear quantum stochastic differential equations (QSDEs). In
classical linear systems theory, an observer is a system driven
by the plant outputs (and control inputs where appropriate) and
designed in such a way that the observer variables asymptotically
track the plant variables. As iswell known, if the plant is detectable,
then the observer gain may be chosen so that the estimation error
exponentially converges to zero.

In the quantum case we consider, as Fig. 1 shows, the output of
the quantum plant is a fully quantum signal (e.g. an optical field),
and no measurement is involved in this framework. This signal
drives the observer, another fully quantum system which tracks
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Fig. 1. A plant–observer composite quantum system.

the quantum plant asymptotically in the sense of mean values, in
a series arrangement (Carmichael, 1993; Gough & James, 2009).
Since the algebraic equations corresponding to a direct analog
of the classical Luenberger observer need not correspond to a
quantum physical system, here we have to consider the existence
of such an observer constrained by physical realisability conditions
distinguished from the classical case. We find explicit forms for
the coefficients of a physically realisable coherent observer, and
prove that there always exists a coherent quantum observer. This
may involve including additional quantum noise in the observer
(James et al., 2008; Miao & James, 2012). It is worth noting that
the quantum observer we propose in this paper ‘‘observes’’ the
observables of a linear quantum plant coherently, but not the
quantum states. Herewemention another publication on quantum
observers (Yamamoto, 2006), where the observers considered are
classical systems, and measurement is involved.

In this paper, we give a full and general theorem with
detailed proofs concerning the existence of coherent quantum
observers, whereas only a partial result is presented in Miao and
James (2012). New results for a simplified observer design for
annihilation-operator linear quantum systems are included, and
we show an explicit structure for the observer in this situation
without additional quantum noise. Furthermore, we provide the
fundamental limit for the mean squared estimation error by using
a coherent observer. Observations in our work regarding quantum
correlations in joint plant–observer quantum systems suggest
there are inherent differences between tracking systems with
classical and quantum components, making this topic not only
practical but also interesting. Applications of coherent quantum
observers can be expected, as the notion of an observer and
estimate that we use has a history of success in the classical
literature (Luenberger, 1966).We have applied the observer theory
to fully quantum coherent tracking feedback control in Miao,
James, and Ugrinovskii (2015). Moreover, quantum observers
design using stronger criteria involving covariances have been
developed in Miao, Hush, and James (2015).

The paper is organised as follows. Section 2 presents the linear
quantum stochastic systems of interest as well as the physical
realisability conditions. In Section 3, we give a detailed proof of
the existence of coherent quantum observers, and provide a lower
bound for the mean squared observer error. This is followed by
Section 4, in which we analyse the quantum correlations in a
joint plant–observer Gaussian system, including quantum discord.
Section 5 provides some concluding remarks and future research
directions.
Notation. In this paper, the asterisk is used to indicate the Hilbert
space adjoint X⋆ of an operator X , as well as the complex conjugate
z⋆

= x − iy of a complex number z = x + iy (here, i =
√

−1
and x, y ∈ R). The conjugate transpose AĎ of a matrix A =


aij


is defined by AĎ =


a⋆
ji


. Also defined are the conjugate A♯

=

a⋆
ij


and the transpose AT

=

aji


matrices, so that AĎ =


AT

♯
=


A♯

T .
Real and imaginary parts of a matrix A are denoted by ℜ (A) and
ℑ (A) respectively. The mean value (quantum expectation) of an
operator X is denoted by ⟨X⟩. The commutator of two operators
X, Y is defined by [X, Y ] = XY − YX . The anti-commutator of two
operators X, Y is defined by {X, Y } = XY + YX . The tensor product
of operators X, Y defined on Hilbert spaces H,G is denoted X ⊗ Y ,
and is defined on the tensor product Hilbert spaceH⊗G. In (n ∈ N)
denotes the n dimensional identity matrix. 0n (n ∈ N) denotes the
n dimensional zero matrix.

2. Linear quantum stochastic systems

The dynamics of an open quantum system are uniquely deter-
mined by the triple (S, L, H) (Gough & James, 2009; Parthasarathy,
1992). The self-adjoint operator H is the Hamiltonian describing
the self-energy of the system. The unitary matrix S is a scattering
matrix, and the column vector Lwith operator entries is a coupling
vector. S and L together specify the interface between the system
and the fields. Given an operator X defined on the initial Hilbert
space H, its Heisenberg evolution is defined by

dX = (L (X) − i [X, H]) dt + dW ĎSĎ [X, L]

+

LĎ, X


SdW + tr


SĎXS − X


dΛw


, (1)

with

L (X) =
1
2
LĎ [X, L] +

1
2


LĎ, X


L, (2)

which is called the Lindblad superoperator. The operators W are
defined on a particular Hilbert space called a Fock space F. When
the fields (the number of fields is nw) are in the vacuum states,
these are the quantumWiener processes which satisfy the Itô rule

dWdW Ď
= Inwdt.

Input field quadratures W + W ♯ and −i

W − W ♯


are each

equivalent to classical Wiener processes, but do not commute.
A field quadrature can be measured using homodyne detection
(Gardiner & Zoller, 2000; Gough & James, 2009). The gauge
processes Λw are input signals to the system as well.

We assume there is no interaction between different fields, and
thus hereafter we assume S to be the identity matrix without loss
of generality (James et al., 2008). This assumption eliminates the
first term on the right hand side of (1). To be specific,

dX = (L (X) − i [X, H]) dt +
1
2


[X, L] − [X, LĎ]


dW1

−
i
2


[X, L] + [X, LĎ]


dW2, (3)

with
W1
W2


=


W + W ♯

−i(W − W ♯)


.

The quadrature form of the output fields is given by
dY1
dY2


=


L + L♯

−i(L − L♯)


dt +


dW1
dW2


. (4)

In this workwe focus on open harmonic oscillators. The dynamics of
each oscillator are described by two self-adjoint operators position
qj and momentum pk, which satisfy the canonical commutation
relations [qj, pk] = 2iδjk where δjk is the Kronecker delta. It is
convenient to collect the position and momentum operators of
the oscillators into an nx-dimensional column vector x (t), defined

by x (t) =


q1 (t) , p1 (t) , q2 (t) , p2 (t) , . . . , q nx

2
(t) , p nx

2
(t)

T
. In

this case the commutation relations can be re-written as:

x (t) x (t)T −

x (t) x (t)T

T
= 2iΘnx (5)

where Θnx = I nx
2

⊗ J with J =


0 1

−1 0


. In general, Θn = I n

2
⊗ J for

any even number n ∈ N.
Harmonic oscillators, in particular, are defined by having a

quadratic Hamiltonian of the form H =
1
2x

TRx with R being a
Rnx×nx symmetric matrix, and a coupling operator of the form L =

Ξx with Ξ being a C
nw
2 ×nx matrix (here nx, nw and ny are positive

even numbers). A special property of open harmonic oscillators
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