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a  b  s  t  r  a  c  t

Traditional  methods  for constructing  brain  functional  network  often  need  to  artificially  set a  certain
threshold,  which  requires  professional  and  technical  personnel  to  do this  work.  In  order  to  overcome  this
deficiency,  this  study  proposed  a new  method  that  can  automatically  construct  brain  functional  network
from  electroencephalogram  (EEG)  data,  based  on positional  relations  among  the  vertices  and  network
motif  theories.  To  verify  this  method,  resting  state  and  task  state  EEG  data  were  converted  into  brain
functional  networks  with  both  the  new  method  and  traditional  methods  to explore  the  discrepancies  of
network  features.  The  results  showed  that  the  mean  physical  distance  increased  with  the increasing  of
network  edges,  evidently  suggesting  that higher  weights  of  the  edges  have  shorter  physical  distances,
which  is  the  direct  model  foundation.  Besides,  consistent  results  of  network  features  were  obtained
among  these  methods,  especially  in  weighted  networks,  indicating  that  this  new  method  had  the  same
capacity  in  accurately  characterizing  network  features  compared  with  the traditional  methods.  Moreover,
this new  method  can  efficiently  distinguish  the  networks  that  have  big differences  in  the  weights,  if
the  network  has  higher  weights,  the  corresponding  network  would  have  more  edges,  which  is in  line
with  one  of  the  traditional  methods  that  using  a threshold  of  weight.  We  also  applied  this  model  in
mental  fatigue  detection,  and  the  results  of network  characteristics,  which  obtained  from  the  model
and  traditional  method,  have  the  same  variation  tendency,  approximate  values,  and  similar  statistical
differences,  demonstrating  that  the  proposed  model  can replace  the traditional  methods  in  differentiating
similar  brain  functional  states.  The  new  method  have  potential  applications  in  real-time  brain  functional
networks  construction.

© 2018  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Brain is one of the most complex systems in the real word. Since
Hans Berger firstly recorded human brain electroencephalogram
(EEG) signals in 1924, EEG has been widely applied to study the
human brain [1]. For deeply exploiting the human brain, brain func-
tional network analysis has been developed, and become a popular
research field over the past 20 years. Brain functional network
is often used to demonstrate the temporal function correlations
between remote brain regions in the processes of neural physio-
logical events. After small word character of most real networks
[2] and scale free character of large scale networks [3] were dis-
covered, brain functional network has come into a high speed
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development time, and been widely applied to study brain sci-
ence in different brain functions and dysfunctions. Commonly
neuroimaging modalities for brain functional networks generally
base on the data of EEG [4–7], magnetoencephalogram (MEG) [8],
positron emission tomography (PET) [9], functional magnetic reso-
nance imaging (fMRI) [10], near infrared reflectance spectroscopy
(NIRS) [11]. Among the mapping techniques mentioned above, EEG
is the best choice for engineering applications because of its lower
costs, higher temporal resolution and more convenient operation,
except its limitation in spatial resolution. For the formation of adja-
cency matrix, some measurements could be applied to evaluate
the functional connectivity between any two brain regions, such as
correlation [11], coherence [12], mutual information (MI) [8], syn-
chronization likelihood [5], etc. Among the various measurements
for functional connectivity, we chose MI  in this study, which quan-
tifies the comprehensive information of the signal amplitude and
phase between two  time series based on information theory.

In order to convert an adjacency matrix into a brain functional
network, two popular methods have been developed by previous
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researchers. These two methods were named as traditional method
A and B for convenient description. Traditional method A: use a
constant threshold (the weight of the functional connectivity) or a
series of continuously changing thresholds [5,6]. This approach can
sufficiently take the weights of functional connectivities into con-
sideration. If the whole weights in one adjacency matrix is higher
than that in another one, the corresponding network would con-
tain more edges, which would simply result in higher clustering
coefficient, and shorter characteristic path length. Then the differ-
ences of the network features between these two networks can be
obviously distinguished. Traditional method B: keep the number of
edges fixed in a network [4,5]. By fixing the number of edges (the
weights of the edges selected from high to low), all networks have
the same numbers of vertices and edges; the only difference is in the
spatial arrangement [5]. Therefore, we can compare the topological
structures between different networks without bias from differ-
ences in numbers of edges. However, both of these two traditional
methods need to artificially set a certain threshold: a threshold of
weight or a fixed degree, which might be too complex to be applied
in real-time engineering. Thus, a new method that can automati-
cally construct brain functional networks is an urgent need in this
area.

Complex network theories are widely exploited for studying
properties of brain functional networks and comparing the dif-
ferences in internal and external functional conditions. Generally
explored network theoretical metrics include the degree (distribu-
tion), betweenness and closeness centrality, clustering coefficient,
characteristic path length, and global and local efficiency [2,13–15].
The applications of these evaluation metrics to study the dissim-
ilarities of brain functions pervade various aspects, such as the
normal participants that in eyes-closed and eyes-open states [16],
that with lower and higher education levels [6], and that at different
sleep stages [4], as well as the participants that suffering from brain
diseases and dysfunctions [5,17]. But fewer studies explore the dif-
ferences of the network features between resting state (RS) and
task state (TS) with complex network theories. In functional brain
mapping, TS can be compared to RS [18]. The functional changes of
the spontaneous brain activity from RS to TS still remain unclear.
Several researchers have investigated the topological organizations
of brain functional networks in eyes-closed and eyes-open states
[8,10,19]. Compared to eyes-closed state, the increased attentional
load and raised level of arousal are sustained in eyes-open state
[20]. Therefore, distinct topological features are revealed between
these two states [16]. We  can boldly address the following hypothe-
sis that the topological characters and structures of brain functional
network would have significant changes from RS to TS.

In the present study, we attempted to propose a new method for
automatically modelling brain functional network, and verify this
method by comparing with the traditional methods in studying the
dissimilarities of the network features (clustering coefficient and
characteristic path length) between RS and TS. Then this method is
applied in mental fatigue detection to testify its validity and practi-
cability. Functional connectivity between all pairs of EEG channels
was determined by MI  in the following five EEG frequency bands:
delta, theta, alpha1, alpha2, and beta. These connectivities were
used to form the adjacency matrices, which were then converted
into brain functional networks. The traditional methods were also
used to compare with this new method.

2. Methods

2.1. Participants

Eighteen healthy male participants of engineering graduate stu-
dents were recruited in this study. They are all right-handed, and

between the ages of 23 and 26 (24.5 ± 1.5, mean ± SD). The body
mass index (BMI) of them are 20.7 ± 1.8 kg/m2. All enrolled volun-
teers were required to have a regular life routine, have a normal
eyesight or rectified normal eyesight, and have no history of brain
diseases, such as epilepsy, schizophrenia, brain trauma, etc. All
evaluated individuals were asked to do not stay up late and take
any alcohol drink and drugs in a week preceding the experiment,
have no smoking, no coffee, and no strong tea in eight hours before
tests, and to wash their hair in two  hours before EEG data recording.
All the requirements were reported by themselves. All procedures
performed in the study involving human participants were in accor-
dance with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki declaration and its
later amendments or comparable ethical standards. Informed con-
sent was obtained from all individual participants included in the
study. All participants can get some monetary reimbursements for
the incentives of their better cooperation in the tests.

2.2. EEG data acquisition and preprocessing

EEG data were recorded by a digital EEG apparatus (SYMTOP
NT9200) at the following 19 positions of the 10–20 systems: Fp1,
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz,
and Pz (Fpz was  chosen as the grounding electrode), referred to
linked A1 + A2 electrodes. Electrode impedance was below 5000
�.  Two  states were considered in EEG data acquisition: RS and TS.
RS refers to be awake, closing the eyes and relaxed, and partici-
pants were requested to concentrate their attention on the breath
for avoiding thinking other things. Meanwhile, TS means that par-
ticipants were required to keep the body still and do a mental
arithmetic math problem, a three-digit number subtracts a single
digit continuously (keep the same for all participants and showed
on a computer screen). Two minutes of the EEG data were recorded
for each condition. The tests were conducted in a sound attenuated,
and temperature, humidity and light controlled room while partic-
ipants sat on a chair with a comfortable posture during the data
collections.

For the present analysis, 10 pieces of 5 s of artifact-free con-
tiguous data (containing no eye blinks, slow eye movements,
electrocardiogram artifacts, baseline drift, etc.) were selected off-
line from each condition by EEGLAB. Then, the EEG data were down
sampled to 256 Hz, resulting in time series of 1280 data points for
further analysis. The MI  between all pairs of electrodes was  calcu-
lated after digital, FFT filtering to distinguish EEG frequency bands
(delta, 2–4 Hz; theta, 4–8 Hz; alpha1, 8–10 Hz; alpha2, 10–13 Hz;
beta, 13–30 Hz), resulting in an undirected 19 by 19 (the number of
EEG channels) adjacency matrix. The MI  (see Ref. [8]. for detailed
description and definition) is calculated by a software written by
Moddemeijer [21].

2.3. Brain functional network modelling

In this study, we constructed brain functional network model
with network motifs theories based on the physical distances and
weights of the functional connectivities. Network motifs were
firstly put forward by Milo et al. [22] and defined as patterns
of interconnections that recur in a network at frequencies much
higher than those found in corresponding random networks. Net-
work motifs are identified as the basic building blocks of complex
networks [22]. Most networks are composed of repeated appear-
ances of network motifs [23]. In undirected networks, 3 nodes
motifs only have two patterns. One pattern is with triangular con-
nectivity structure among 3 vertices: triangle motif. The other
pattern is with two edges among 3 vertices. Here, we only consider



Download English Version:

https://daneshyari.com/en/article/6950701

Download Persian Version:

https://daneshyari.com/article/6950701

Daneshyari.com

https://daneshyari.com/en/article/6950701
https://daneshyari.com/article/6950701
https://daneshyari.com

