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a b s t r a c t

This paper proposes sufficient conditions under which nonlinear input-affine systems can be made
Strongly iISS in the presence of actuator saturation. Strong iISS was recently proposed as a compromise
between the strength of input-to-state-stability (ISS) and the generality of integral input-to-state stability
(iISS). It ensures in particular that solutions are bounded provided that the disturbance magnitude is
below a certain threshold, and that they tend to the origin in response to any vanishing disturbance. We
propose a growth rate condition under which the bounded feedback law proposed by Lin and Sontag for
disturbance-free nonlinear systems ensures Strong iISS in the presence of perturbations.We illustrate our
findings on the angular velocity control of a spacecraft with limited-power thrusters. In the specific case
of linear time-invariant systemswith neutrally stable internal dynamics, we provide a simple static state-
feedback that ensures Strong iISS in presence of actuator saturations. This second result is illustrated by
the robust stabilization of the harmonic oscillator. In both cases, we provide an estimate of the maximum
disturbance amplitude that can be tolerated without compromising solutions’ boundedness.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Actuator saturation exists inmost practical control systems. The
design of stabilizing feedback laws for such systems has attracted a
lot of attention. The aim of this paper is to contribute to the investi-
gations onwhat robustness properties can be achieved by bounded
control. It is well known that a necessary and sufficient condition
for the stabilizability of a linear time-invariant (LTI) plant by sat-
urated feedback is that the internal dynamics have no pole with
positive real part (Sontag, 1998b). Several studies in the literature
have proposed bounded stabilizing feedback for particular classes
of systems whose internal dynamics exhibit no exponential in-
stability. For LTI systems whose system matrix eigenvalues have
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no positive real part, it has been shown in Sontag and Sussmann
(1990) that global stabilization by bounded output feedback can be
achieved if and only if the system is both detectable and stabiliz-
able. For neutrally stable systems (meaning LTI systems whose in-
ternal dynamics exhibit no unbounded solutions), it is also known
that stabilization can be achieved using a saturated linear static
feedback: see e.g. Liu, Chitour, and Sontag (1996) and references
therein. Nonetheless some classes of systems, although having no
poleswith positive real parts, cannot be stabilized by saturated lin-
ear static state-feedback; this class includes chains of three ormore
integrators (Fuller, 1969; Sussmann & Yang, 1991). Nested satu-
rations have been proposed to stabilize such systems (Sussmann,
Sontag, & Yang, 1993; Teel, 1992). Stabilization by bounded con-
trol has also proved useful for nonlinear dynamics, especially in
the context of systems in feedforward form (Mazenc & Praly, 1996;
Teel, 1996) or by relying on ‘‘universal constructions’’ (Lin & Son-
tag, 1991).

Beyond stabilization, it is often desirable to ensure some ro-
bustness properties in order to cope, for instance, with param-
eter uncertainty, measurement noise or exogenous disturbances.
Lp-stabilization with respect to disturbances acting ‘‘inside’’ the
saturation (meaning appearing linearly in the argument of the
saturation function) was achieved in Saberi, Hou, and Stoorvogel
(2000) based on the low-and-high gain control law introduced
in Megretski (1996). This robust stabilization has been extended
to systems with disturbances acting ‘‘outside’’ the saturation
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(meaning as an additive term in the dynamics, and thus acting in
an unbounded way) in Wang, Saberi, Stoorvogel, and Grip (2012)
for chains of integrators under matching conditions. Also, explicit
estimates of Lp input/output gains have been obtained for neutrally
stable systems based on a saturated linear static feedback (Liu
et al., 1996). Another natural candidate for the evaluation of ro-
bustness to exogenous inputs is the framework of input-to-state
stability (ISS, Sontag (1989a, 2006)) and its weaker variant integral
ISS (iISS, Sontag (1998a)). In Angeli, Chitour, andMarconi (2005), a
saturated linear state-feedback is proposed that ensures ISS with
respect to sufficiently small disturbances despite parameter un-
certainty for systems of dimension smaller than or equal to three,
as well as feedforward systems. ISS of neutrally stable systems
with respect to disturbances acting outside the saturation have
been proposed in Arcak and Teel (2002) under matching condi-
tions. Other approaches guarantee ISS and iISS with bounded con-
trol to nonlinear systems based on the aforementioned ‘‘universal
constructions’’ (Liberzon, 2002).

Among other robustness features, ISS ensures a bounded
response to any bounded disturbance. Intuitively, one may expect
that bounded controls fail in general at guaranteeing the solutions’
boundedness if the disturbance acts outside the saturation with
a too large amplitude (unless matching conditions between the
saturated actuator and the disturbance are imposed: see e.g. Arcak
and Teel (2002); Wang et al. (2012)). At first sight, for these
systems, nothing more than ISS with respect to small inputs can
be established, thus providing no information on the system’s
behavior for larger inputs. In this note, we provide sufficient
conditions under which a more interesting property, namely
Strong iISS, can be achieved by saturated feedback. This property,
introduced in Chaillet, Angeli, and Ito (2014a), not only guarantees
ISS with respect to small inputs but also iISS. In particular, it
ensures a bounded response to any disturbance whose amplitude
is below a given threshold, but also the existence of solutions
at all times even for disturbances above that threshold. It also
guarantees that the state converges to zero in response to any
vanishing disturbance, and it is known to be preserved under
cascade interconnection (Chaillet, Angeli, & Ito, 2014b).

In this paper, we identify two classes of systems for which
Strong iISS can be achieved by saturating feedback. The first one
is made of input-affine systems that can be internally stabilized
by the ‘‘universal construction’’ of Lin and Sontag (1991) and for
which a specific growth rate condition holds. The second one is
the class of neutrally stable LTI systems, for which a saturated
linear state feedback is shown to ensure Strong iISS. In both cases,
the considered disturbances act outside the saturation, and no
matching condition between the actuation and the disturbances
is assumed. We start by formulating the problem and motivating
it through an example (Section 2). Then, in Section 3, we provide
a sufficient condition under which Strong iISS is achieved by
saturated feedback and provide growth rate conditions under
which the ‘‘universal construction’’ originally proposed to ensure
global asymptotic stability of the disturbance-free system also
guarantees Strong iISS in presence of perturbations. We provide
an explicit estimate of the maximal disturbance amplitude that
can be tolerated without compromising solutions’ boundedness.
We illustrate our findings through the stabilization of the Euler
equations of a rotating spacecraft. Finally, focusing on LTI systems
whose internal dynamics are neutrally stable, we propose in
Section 4 a simple linear state feedback that ensures Strong
iISS to additive disturbance despite actuator saturation. Here
also, we provide an explicit estimate of the maximum tolerable
disturbance amplitude and compare it to numerical observations
in an example. Proofs are provided in Section 5.
Notation. For a nondecreasing continuous function γ : R≥0 →

R≥0, γ (∞) ∈ R≥0 ∪ {∞} denotes the quantity lims→+∞ γ (s). A

function α : R≥0 → R≥0 is of class PD if it is continuous and
positive definite. It is of classK if, in addition, it is increasing. It is of
class K∞ if it is of class K and α(∞) = ∞. β : R≥0 × R≥0 → R≥0
belongs to class KL if, given any fixed t ≥ 0, β(·, t) ∈ K
and, given any fixed s ≥ 0, β(s, ·) is continuous, nonincreasing
and asymptotically goes to zero. Given x ∈ Rn, |x| denotes its
Euclidean norm. Given a positive integer p,Up denotes the set of all
measurable locally essentially bounded functions d : R≥0 → Rp.
For a given d ∈ Up, ∥d∥ := ess supt≥0 |d(t)|. Given a constant
R > 0, we let U

p
<R denote the set {d ∈ Up

: ∥d∥ < R}. sat :

Rn
→ Rn is the vector saturation function defined as sat(x) =

(sat0(x1), . . . , sat0(xn))T , where sat0(s) := min{1; |s|}sign(s) for
each s ∈ R. A function V : Rn

→ R≥0 is called a storage function if it
is continuously differentiable and satisfies V (0) = 0 and V (x) > 0
for all x ≠ 0. A storage function is said to be proper if, in addition,
lim|x|→∞ V (x) = ∞. Given a storage function V and a vector field
f : Rn

→ Rn, Lf V (x) :=
∂V (x)

∂x f (x).

2. Problem statement

Consider a nonlinear system of the form ẋ = f (x, u, d), where
x ∈ Rn is the state, u ∈ Rm is the control input, d ∈ Rp the
exogenous disturbance and f : Rn

× Rm
× Rp

→ Rn denotes a
locally Lipschitz function satisfying f (0, 0, 0) = 0. If the system
is stabilized through a static state feedback u = k(x), the system
takes the form

ẋ = f̃ (x, d), (1)

where f̃ (x, d) := f (x, k(x), d). Given x0 ∈ Rn and an input signal
d ∈ Um, the solution of (1) starting at x0 at time t = 0 is referred to
as x(·, x0, d) (or simply x(·)) on the timedomainwhere it is defined.

Assume that the state feedback k(x) is nominally designed to
ensure input-to-state stability (ISS, Sontag (1989a, 2006)) of the
closed-loop system (1), namely
|x(t; x0, d)| ≤ β(|x0| , t) + µ(∥d∥), ∀t ≥ 0 (2)
for all x0 ∈ Rn, all d ∈ Up and all t ≥ 0, where β ∈ KL and µ ∈

K∞. Such a control law may be designed using techniques from
the literature, such as Krstic and Li (1998); Liberzon, Sontag, and
Wang (2002); Malisoff, Rifford, and Sontag (2004); Sontag (1990);
Teel and Praly (2000). Then, a natural question is to know what
robustness can be guaranteed to (1) in the presence of actuator
saturation. Intuitively, we can expect that the applied control input
u = sat(k(x)) fails at guaranteeing a bounded state in response
to disturbance of too large magnitude, thus compromising ISS.
Nonetheless a weaker robustness property, namely iISS (Sontag,
1998a), can reasonably be expected, that is

|x(t; x0, d)| ≤ β(|x0| , t) + µ1

 t

0
µ2(|d(s)|)ds


,

for all x0 ∈ Rn, all d ∈ Up, and all t ≥ 0, where β ∈ KL and
µ1, µ2 ∈ K∞. Unfortunately, even if iISS systems prove robust
with respect to classes of inputs with finite energy (in particular,
as shown in Sontag (1998a), if the energy


∞

0 µ2(|d(s)|)ds is
finite, then the state converges to the origin), solutions can grow
unbounded in the presence of arbitrarily small and even vanishing
inputs (Chaillet et al., 2014a). Generically, we may expect a
bounded state property atmost for disturbanceswhose amplitudes
are below a specific threshold. That is, we could investigate the
property of ISS with respect to small inputs, meaning to require
that (2) holds only for disturbances with sufficient lowmagnitude.
However, with this property, no guarantee on the behavior of the
system can be given when the disturbance magnitude gets larger;
the very solution of the system may fail to exist. Hence, a good
candidate to evaluate the robustness to exogenous disturbances
of systems with saturated feedback seems to be the Strong iISS,
recently introduced in Chaillet et al. (2014a).
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