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a  b  s  t  r  a  c  t

This paper  presents  a novel  method  for removing  ocular  artifacts  from  EEG  recordings.  The proposed
approach  is  based  on time-domain  linear  filtering.  Instead  of directly  estimating  the artifact-free  signal,
we propose  to obtain  the  eye-blink  signal  first,  using  a multichannel  Wiener  filter (MWF)  and  a  small
subset  of  the  frontal  electrodes,  so  that  extra EOG  sensors  are unnecessary.  Then,  the estimate  of the  eye-
blink  signal  is subtracted  from  the  noisy  EEG  signal  in  accordance  with  principles  of regression  analysis.
We  have  performed  numerical  simulations  so  as to  compare  our  approach  to the  independent  component
analysis  (ICA)  that is  commonly  used  in  EEG  enhancement.  Our  experiments  show  that  the  MWF-based
approach  can  perform  better  than  the  ICA  in  terms of eye-blink  cancellation  and  signal  distortions.  Besides
that,  the proposed  approach  is conceptually  simpler  and  better  suited  to real-time  applications.

©  2018  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Electroencephalography (EEG) is a common method for diag-
nosing neurological disorders. However, it is difficult to analyse
brain activity signals, since they are multichannel, non-stationary,
and they are often contaminated by non-neural contents like eye
movements, blinks, muscle activity, heartbeats and power line
noise [1]. The electrical interferences associated with eyeball move-
ments and blinks, also known as ocular artifacts, present serious
problems for EEG data interpretation. In fact, several mechanisms
are responsible for generating these interferences, see [2] for a
detailed description. Generally, potentials generated by an eye-
blink, are 10 times larger in amplitude than the neural activity
at frontal electrodes and can last up to 400 ms  [3]. Unfortunately,
these behaviours are usually involuntary, thus controlling test sub-
jects is unrealistic and nearly impossible, especially in cases of
certain neurological disorders, e.g. hyperactivity, schizophrenia.
In addition, some studies show that brain activity is affected by
attempts to avoid blinking or to keep eyes closed [2,4]. On the
other hand, some diagnostic need visual feedback, i.e. observation
of moving objects.

Usually EEG data are preprocessed before interpretation and fur-
ther analysis. The simplest approach is to manually select and reject
deteriorated fragments, based on their time-frequency character-
istics. This process can be time consuming and requires a trained
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technician that is able to identify such fragments. Moreover, this
subjective task often leads to a significant data loss. Therefore, in
recent years we  observe a growing interest in automated detection
and removal of ocular artifacts in EEG signals [5–7].

One approach to reducing artifacts related to eye-blinking is
regression analysis [2,8], which uses electrooculographic (EOG) ref-
erence signals collected near the eyeballs. These signals are simply
multiplied by propagation factors and subtracted from data reg-
istered by EEG electrodes. The method is easy to implement, but
in general it is based on assumptions that are not necessarily true.
Namely, EOG signals also contain brain activity from frontal lobes,
thus subtraction tends to distort EEG signals. Furthermore, some
systems cannot be equipped with EOG electrodes.

Other methods are based on spatial decompositions of EEG
signals. These techniques usually do not require additional EOG
sensors and perform blind source separation (BSS). An example is
the principal component analysis (PCA) which was used to decor-
relate EEG signal sources [9]. The PCA transforms multivariate data
(correlated EEG signals) into a set of uncorrelated components. The
artifact-free EEG signal can be reconstructed by rejecting compo-
nents that correspond to eye-blinks. Unfortunately, the PCA relies
on second order statistics only (i.e. covariance matrices), and thus
the algorithm fails when amplitudes of the separated sources are
comparable (within the same spectral band).

The independent component analysis (ICA) has been found to
be highly effective in separating neural activity from ocular arti-
facts in EEG signals [10,11]. Unlike the PCA, the ICA relies on higher
order statistics (e.g. kurtosis) and decomposes multivariate data
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into components that are statistically independent. Thus the ICA
is capable of extracting some artifacts even when they are lower
in amplitude than the background brain activity. Similarly as in
the case of the PCA, after detecting artifacts in some components,
EEG signals are reconstructed using only artifact-free components.
While estimating independent components (ICs), the number of
sources is often assumed to be equal to the number of electrodes. In
fact, the former number is unknown, and the ICA does not guarantee
the correct results, if there are more sources than electrodes.

Recently, a tensor decomposition has become surprisingly
attractive for processing EEG data [12,13]. In these approaches,
spatial, temporal and frequency informations contained in EEG
recordings are processed simultaneously. The tensor decompo-
sition finds application in multi-way blind source separation,
dimensionality reduction, feature vector extraction and classifica-
tion. It was also used for an automatic eye-blink removal [14].

Unfortunately, BSS-related approaches to eye-blink correction
are usually unable to perfectly distinguish artifactual data and
often a large amount of useful information is also removed. More-
over, they have a relatively high computational complexity and can
present serious difficulties when implemented in real-time appli-
cations. Another issue is that any method, which relies on BSS,
requires proper identification of blinking components, which in
general is not an easy task [5,6]. A common solution to this problem
is to use dipole model [15] for localization of a particular electrical
activity within brain. In this approach each independent compo-
nent is projected to the scalp, and fitted with a single dipole model.
If a dipole is located within eye area, the corresponding component
is automatically identified as the eye-blink artifact. The method
proposed in [16] uses wavelet decomposition and adaptive thresh-
olding technique for identification and correction of ocular artifacts.
It was shown in [17] that artificial neural network (ANN) can be also
used for this purpose, which gives better results than the adaptive
thresholding technique. These approaches can be combined with
ICA [18] in order to remove ocular artifacts from the contaminated
ICs.

The primary goal of this work is to create a conceptually sim-
pler alternative to BSS-related methods, which offers similar results
and can be easily implemented in real-time systems. We  propose to
use a multichannel Wiener filter (MWF)  [19] to estimate not a neu-
ral activity signals but eye-blink component at frontal lobes only.
Such a choice is motivated by the observation that eye-blink signal
is usually much less stationary than typical neural activity. Also the
ratio of the average eye-blink signal power to the average power of
the physiological brain activity (measured in signal-to-noise ratio
terms) is relatively high, especially at frontal electrodes. The MWF-
based estimate of the eye-blink component can be further used
in place of the EOG signals. Namely, by using a propagation model
similar to that of the regression analysis, we can estimate eye-blink
signals measured at all electrodes. An artifact-free EEG signal at
each electrode is obtained by subtracting the corresponding esti-
mated eye-blink signal from data registered by this electrode. A
similar approach has been proposed in [20], where the Wiener filter
has been used as a post-processor to denoise the contaminated ICs.
In opposition to [20], our technique uses a multichannel counter-
part of the Wiener filter and does not require the ICA. The proposed
method relies on second-order statistics mainly, but exploits spatial
information encoded in cross-correlation matrices.

The rest of the paper is organized as follows. Section 2 describes
the signal model and explains multichannel Wiener filtering. Sec-
tion 3 presents the proposed method for eye-blink removal, while
Section 4 gives some details that will help the reader understand
how the method was implemented. Section 5 describes experimen-
tal settings and presents the achieved results. Finally, conclusions
are given in Section 6.

2. Multichannel Wiener filter

2.1. Data model and notation

Let us consider a set of N EEG electrodes. Usually data are divided
into L-sample frames in each channel. By assuming a linear mix-
ing model and by using vector-matrix notation, the kth frame of
the observation signal at the nth sensor/channel can be written as
follows:

yn(k) = xn(k) + vn(k), n = 1, 2, . . .,  N, (1)

where xn(k) and vn(k) are respectively the original eye-blink com-
ponent and the clean brainwave EEG vector, both of the size L.
For the sake of completeness, we  also define the cross-correlation
matrix of arbitrary column vectors a(k) and b(k) as

Rab = E[a(k)bT (k)], (2)

where E{.} is the expectation operator, and (.)T denotes the vec-
tor/matrix transpose.

Unless otherwise stated, an equation holds for any arbitrarily
chosen point of time. Therefore, for the sake of brevity, the frame
index k is often omitted in the rest of this paper.

2.2. Linear filtering

In the linear filtering framework [19] the clean signal is
estimated directly, but herein we  propose to estimate a noise com-
ponent first, and then to subtract it from observation vectors. This
procedure is theoretically equivalent to the conventional approach,
but due to the nature of the EEG signals, it has certain practical
advantages, which will be explained later.

The eye-blink component at the nth sensor can be estimated by
applying a linear transformation to the observation vector:

x̂n(k) = Hny(k) = Hn[x(k) + v(k)], (3)

where

y(k) = [yT1(k) yT2(k) . . . yTN(k)]
T
,

x(k) = [xT1(k) xT2(k) . . . xTN(k)]
T
,

v(k) = [vT1(k) vT2(k) . . . vTN(k)]
T
,

(4)

and Hn is the optimal filtering matrix of size L × LN.  The estimation
error is defined by

en(k) = x̂n(k) − xn(k)

= (Hn − Un)x(k) + Hnv(k),
(5)

where

Un = [0L×(n−1)L IL 0L×(N−n)L]. (6)

The optimal filtering matrix is obtained by minimizing the mean-
square error (MSE):

J(Hn) = tr[en(k)eTn(k)]

= tr[Rxnxn ] + tr[HnRyyHTn] − 2tr[RxnyHTn].
(7)

By differentiating the above expression with respect to Hn and by
setting the result to zero, we  obtain [19]:

Hn = RxnyR−1
yy . (8)

As signal xn(k) is not observable, the matrix Rxny must be estimated
indirectly.
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