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a b s t r a c t

We solve the problem of stabilizing a general class of linear first-order hyperbolic systems. Considered
systems feature an arbitrary number of coupled transport PDEs convecting in either direction. Using
the backstepping approach, we derive a full-state feedback law and a boundary observer enabling
stabilization by output feedback. Unlike previous results, finite-time convergence to zero is achieved in
the theoretical lower bound for control time.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This article solves the problem of boundary stabilization of
a general class of coupled heterodirectional linear first-order
hyperbolic systems of Partial Differential Equations (PDEs) in
minimum time, with arbitrary numbers m and n of PDEs in each
direction and with actuation applied on only one boundary. First-
order hyperbolic PDEs are predominant in modeling of traffic
flow (Amin, Hante, & Bayen, 2008), heat exchanger (Xu & Sallet,
2002), open channel flow (Coron, d’Andréa Novel, & Bastin, 1999;
de Halleux, Prieur, Coron, d’Andréa Novel, & Bastin, 2003) or
multiphase flow (Di Meglio, 2011; Djordjevic, Bosgra, Van den
Hof, & Jeltsema, 2010; Dudret, Beauchard, Ammouri, & Rouchon,
2012). Research on controllability and stability of hyperbolic
systems has first focused on explicit computation of the solution
along the characteristic curves in the framework of the C1 norm
(Greenberg & Tsien, 1984; Li, 1994; Qin, 1985). Later, Control
Lyapunov Functions methods emerged, enabling the design of
dissipative boundary conditions for nonlinear hyperbolic systems
(Coron, 2009; Coron, Bastin, & d’Andréa Novel, 2008). In Coron,
Vazquez, Krstic, and Bastin (2013) control laws for a system of two
coupled nonlinear PDEs are derived, whereas in Castillo, Witrant,
Prieur, and Dugard (2012), Coron et al. (2008), Prieur and Mazenc
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(2012), Prieur, Winkin, and Bastin (2008), Santos and Prieur
(2008) sufficient conditions for exponential stability are given for
various classes of quasilinear first-order hyperbolic system. These
conditions typically impose restrictions on the magnitude of the
coupling coefficients.

In Coron et al. (2013) a backstepping transformation is used
to design a single boundary output-feedback controller. This
control law yields H2 exponential stability of closed loop 2-
state heterodirectional linear and quasilinear hyperbolic system
for arbitrary large coupling coefficients. A similar approach is
used in Di Meglio, Vazquez, and Krstic (2013) to design output
feedback laws for a system of coupled first-order hyperbolic linear
PDEs with m = 1 controlled negative velocity and n positive
ones. The generalization of this result to an arbitrary number m
of controlled negative velocities is presented in Hu, Di Meglio,
Vazquez, and Krstic (2015). There, the proposed control law yields
finite-time convergence to zero, but the convergence time is larger
than the minimum control time, derived in Li and Rao (2010)
and Woittennek, Rudolph, and Knüppel (2009). This is due to
the presence of non-local coupling terms in the targeted closed-
loop behavior. The main contribution of this paper is a minimum
time stabilizing controller. More precisely, a proposed boundary
feedback law ensures finite-time convergence of all states to zero
in minimum-time. This minimum-time, defined in Li and Rao
(2010), Woittennek et al. (2009) is the sum of the two largest time
of transport in each direction.

Our approach is the following. Using a backstepping approach
(with a Volterra transformation) the system is mapped to a
target system with desirable stability properties. This target
system is a copy of the original dynamics with a modified in-
domain coupling structure. More precisely, the target system is
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designed as an exponentially stable cascade. A full-state feedback
law guaranteeing exponential stability of the zero equilibrium
in the L2-norm is then designed. This full-state feedback law
requires full distributed measurements. For this reason we derive
a boundary observer relying on measurements of the states at a
single boundary (the anti-collocated one). Similarly to the control
design, the observer error dynamics are mapped to a target
system using a Volterra transformation. Along with the full-state
feedback law, this yields an output feedback controller amenable
to implementation.

Technically, this design poses a novel challenge as far as
proving the well-posedness of the Volterra transformation. The
transformation kernels satisfy a systemof equationswith a cascade
structure akin to the target system one. This structure enables a
recursive proof of existence of the transformation kernels using
tools similar to the ones presented in Hu et al. (2015).

The paper is organized as follows. In Section 2 we introduce
the model equations and the notations. In Section 3 we present
the stabilization result: the target system and its properties are
presented in Section 3.1. In Section 3.2 we derive the backstepping
transformation. Section 4 contains the main technical difficulty
of this paper which is the proof of well-posedness of the kernel
equations. In Section 4.1we transform the kernel equations into an
integral equation using themethod of characteristics. In Section 4.2
we solve the integral equations using the method of successive
approximations. In Section 5 we present the control feedback
law and its properties. In Section 6 we present the uncollocated
observer design. In Section 7 we give some simulation results.
Finally in Section 8 we give some concluding remarks

2. Problem description

2.1. System under consideration

We consider the following general linear hyperbolic system
which appears in Saint-Venant equations, heat exchangers equa-
tions and other linear hyperbolic balance laws (see Bastin & Coron,
2015).

ut(t, x) + Λ+ux(t, x) = Σ++u(t, x) + Σ+−v(t, x) (1)

vt(t, x) − Λ−vx(t, x) = Σ−+u(t, x) + Σ−−v(t, x) (2)

evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with the following linear
boundary conditions

u(t, 0) = Q0v(t, 0), v(t, 1) = R1u(t, 1) + U(t) (3)

where

u = (u1 . . . un)
T , v = (v1 . . . vm)T (4)

Λ+
=

λ1 0
. . .

0 λn

 , Λ−
=

µ1 0
. . .

0 µm

 (5)

with constant speeds:

− µm < · · · < −µ1 < 0 < λ1 ≤ · · · ≤ λn (6)

and constant real couplingmatrices as well as the feedback control
input

Σ++
= {σ++

ij }1≤i≤n,1≤j≤n Σ+−
= {σ+−

ij }1≤i≤n,1≤j≤m (7)

Σ−+
= {σ−+

ij }1≤i≤m,1≤j≤n Σ−−
= {σ−−

ij }1≤i≤m,1≤j≤m (8)

Q0 = {qij}1≤i≤n,1≤j≤m R1 = {ρij}1≤i≤m,1≤j≤n. (9)

The initial conditions denoted u0 and v0 are assumed to belong to
L2([0, 1], ℜ).

Remark 1. The coupling terms are assumed constant here but the
results of this paper can be adjusted for spatially-varying coupling
terms.

2.2. Control problem

The goal is to design feedback control inputs U(t) = (U1(t),
. . . ,Um(t))T such that the zero equilibrium is reached inminimum
time t = tF , where

tF =
1
µ1

+
1
λ1

. (10)

This problem is very similar to the one presented inHu et al. (2015).
Themaindifference is that the timeproposed in this paper inwhich
the controlled system is stabilized is much smaller.

3. Control design

The control design is based on the backstepping approach:
using a Volterra transformation, we map the system (1)–(3) to a
target system with desirable properties of stability.

3.1. Target system design

Wemap the system (1)–(3) to the following system

αt(t, x) + Λ+αx(t, x) = Σ++α(t, x) + Σ+−β(t, x)

+

 x

0
C+(x, ξ)α(t, ξ)dξ +

 x

0
C−(x, ξ)β(t, ξ)dξ (11)

βt(t, x) − Λ−βx(t, x) = Ω(x)β(t, x) (12)

with the following boundary conditions

α(t, 0) = Q0β(t, 0) β(t, 1) = 0 (13)

where C+ and C− are L∞ matrix functions on the domain

T = {0 ≤ ξ ≤ x ≤ 1} (14)

while Ω ∈ L∞(0, 1) is an upper triangular matrix with the follow-
ing structure

Ω(x) =


ω1,1(x) ω1,2(x) · · · ω1,m(x)

0
. . .

. . .
...

...
. . . ωm−1,m−1(x) ωm−1,m(x)

0 · · · 0 ωm,m(x)

 . (15)

This system is designed as a copy of the original dynamics, from
which the coupling terms of (2) are removed. The integral coupling
appearing in (11) is added for the control design but does not have
any incidence on the stability of the target system: since all the
velocities are strictly positive the integral terms are feedforward
terms.

Remark 2. This new target system is the main difference with Hu
et al. (2015) and is the innovative aspect of this paper.

Remark 3. Without any loss of generality, one can assume that
∀1 ≤ i ≤ m, σ−−

ii = 0 (such coupling terms can be removed using
a change of coordinates as presented in, e.g., Coron et al., 2013). In
this case,Ω(x) has exactly the same structure as thematrix G(x) in
Hu et al. (2015).

Besides, the following lemma assesses the finite-time stability
of the target system.

Lemma 1. The system (11), (12) reaches its zero equilibrium in finite-
time tF =

1
µ1

+
1
λ1

Proof. The proof of this lemma is straightforward using the proof
of Hu et al. (2015, Lemma 3.1). The system is a cascade of α̃-system
(that has zero input at the left boundary) into the β-system (that
has zero input at the right boundary once α̃ becomes null).
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