
Biomedical Signal Processing and Control 45 (2018) 284–304

Contents lists available at ScienceDirect

Biomedical  Signal  Processing  and  Control

journa l homepage: www.e lsev ier .com/ locate /bspc

A  deconvolution  scheme  for  the  stochastic  metabolic/hemodynamic
model  (sMHM)  based  on  the  square  root  cubature  Kalman  filter  and
maximum  likelihood  estimation

Mohammed  Boureghda ∗,  Toufik  Bouden
Non Destructive Testing Laboratory (NDT Lab), Automatic Department, Sciences and Technology Faculty, Mohammed Seddik Ben Yahia University of Jijel,
BP  98 Ouled Aissa, 18000 Jijel, Algeria

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 1 June 2017
Received in revised form 5 March 2018
Accepted 28 May  2018

Keywords:
FMRI
Biophysical model
Stochastic metabolic hemodynamic model
Maximum likelihood estimation
Square-root cubature Kalman filter

a  b  s  t  r  a  c  t

Based  on  clinical  data  collected  using different  brain  imaging  and  recording  techniques,  brain  researchers
built  mathematical  models  of the  activity  in the  human  brain.  To test  these  models  they  simulate  them  by
performing  on  those  models  a  virtual  brain  experiment,  and  compare  the  outputs  from  those  with  the  real
brain activity  recordings.  The  models  can  be  a basis  for  understanding  what  goes  wrong  in brain  diseases
and  brain  disorders  and  potentially  help  to create  new  drugs  for these  conditions.  Metabolic  Hemody-
namic  Model  (MHM)  is  one  of  these  models  that describes  the changes  in  metabolic  and  hemodynamic
responses  during  functional  brain  activity,  formulated  in  a continuous-discrete  state  space  form.  MHM
calibration  is a  decisive  step  for successfully  capture  the  changes  in the  latent  variables  that  can  not  be
directly observed  and predicting  the  brain  activity  related  to  these  changes,  this  requires  having  suitable
techniques  that  permit  us  to  estimate  both  the  hidden  states  and parameters  of  the  MHM.  The method
proposed  in  this  paper  is a  combination  of the  Square  Root  Cubature  Kalman  Filter  (SCKF)  and  Maximum
Likelihood  Estimation  (MLE),  it uses  gradient-based  optimization  algorithms  for optimizing  the  objective
function.  Numerical  results  obtained  with  simulated  data  are  presented  to  illustrate  the  effectiveness  of
the proposed  method  to estimate  the  states,  parameters  and  regenerating  the  BOLD  signal  even  when
the  data  are contaminated  with  high  noise  level.  In  the  proposed  method,  it will be  explained  how  the
gradient  can  be  calculated  with  a new  developed  SCKF-like  recursion  and  the  result,  whenever  there  is a
vast amount  of  data,  so  much  less time  can  be  spent  analyzing  it compared  to the  time  spent  when  the
data  is  analyzed  using  finite  differences.  The  goal  of  these  attempts  is  to construct  a formal  system  that
will produce  theoretical  results  that are  corresponding  to what  is  found  in  reality.

© 2018  Published  by Elsevier  Ltd.

1. Introduction

Functional magnetic resonance imaging (fMRI) represents one
of the most powerful and noninvasive tools that has ever been
developed, by virtue of its capability to image human brain func-
tion. The goal of research interest in fMRI is to understand the neural
mechanisms behind how we see, hear, think, feel and move. One of
the most promising fields in which the fMRI was extensively used
is Cognitive Neuroscience, which focuses on the study of working
memory, decision making, perception, sensation, reasoning, acqui-
sition of knowledge and behavior.
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Electricity is the language of the brain. Brain activity means
the tiny electrical signals (action potentials) that the neurons send
to each other. Unfortunately, that’s not what the fMRI scanner is
measuring, the scanner measures the indirect consequences of neu-
ral activity (the hemodynamic responses). It measures the oxygen
level in the activated areas in the brain and for that why  the signal
that is measured is called Blood Oxygen Level Dependent signal or
in short BOLD signal.

The idea that changes in cerebral blood flow (CBF), cerebral
metabolic rates of oxygen (CMRO2) and glucose (CMRGlc) consump-
tion could be triggered by increasing neuronal activity, is the basis
of functional neuroimaging techniques like fMRI and PET [1]. When
the neurons increase their activity they give orders to the blood
vessels to get more blood flow to the region concerned because it
needs more oxygen and glucose. The question here is how do the
neurons communicate with the blood vessels? This is called the
neurovascular coupling.
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During the last two decades, several mathematical models of the
neurovascular coupling had emerged. Among the first researchers
who have been interested in modeling the brain activity Buxton
et al. [2,3] and Friston et al. [4]. Where several assumptions con-
cerning the modeling of the delivery of the O2 to the brain, the
nonlinear aspects of the BOLD response and others were the basis
for developing the models that will be cited below.

In the Balloon model [3] the blood flow through the capillary is
linked to the volume (v) and total deoxyhemoglobin content (q) by
means of nonlinear ordinary differential equations (ODEs), and the
measured BOLD signal is computed by a nonlinear function of v and
q. The blood flow through the capillary representing the input to
the Balloon model was assumed to be a trapezoidal function with
a certain rise time and duration. Balloon Winkessel model [5] is a
reformulation of the proposed balloon model by taking into con-
sideration the effect of the capillary and venous compliance, more
specifically the resistance of the venous compartment to changes in
blood volume. Friston et al. [6] extended this model [3] to incorpo-
rate the relationship between the neuronal activity and the blood
flow. Hence, the role of the neuronal activity in the generation of
the BOLD signal.

The emergence of such models raised a great challenge for
designing methods that can help in estimating the hidden states,
neuronal activity and identifying model parameters. Probably the
first work attempted to handle this problem was  made by Fris-
ton et al. [6] using Volterra kernels to estimate the parameters of
the hemodynamic model. Based on some studies that showed the
presence of fluctuations in the metabolic responses [7,8] and vas-
cular responses [9–12], it would be better to take into account these
physiological fluctuations. In Riera et al. [13] the hemodynamic
model is generalized to incorporate a Wiener process at the level
of the process equation representing the physiological noise. The
author’s idea was to use the local linearization filter based on the
truncated Ito-Taylor expansion and the composite trapezoidal rule
to estimate both the hidden states and parameters of the balloon
hemodynamic model.

There are so many works that have been made during the last
few years to address the problem of fitting previously cited mod-
els. Additionally, to what already mentioned, there is the approach
based on Kalman filtering where some of its variants were used
to infer the hemodynamic model states and parameters. We  men-
tion for example the Extended Kalman Filter (EKF) [14], Unscented
Kalman Filter (UKF) [15] and the Particle Filter (PF) [16], regarding
particle filter Croce et al. [17,18] recently published two interesting
paper where the hemodynamic model is inverted using both elec-
trical and metabolic recordings. The Square Root Cubature Kalman
Filter (SCKF) belong to the class of nonlinear Kalman filters, intro-
duced by Arasaratnam and Haykin [19] particularly for solving
high-dimensional state estimation problem. From the literature,
this technique appears to outperform the conventional nonlinear
filters like EKF and UKF. It has been used successfully to invert the
hemodynamic model, this inversion provides estimates of both the
hidden states and model parameters as well as the neuronal activ-
ity [20]. Recently Karam et al. [21] proposed a nonlinear neural
network to estimate the states and the input, also a new solution
methodology based on a regularized Newton method and cubature
Kalman filter, has been used in [22] to calibrate the hemodynamic
model.

For better understanding of the brain activity and to be able to
construct plausible models describing this activity, a considerable
knowledge about all physiological phenomena involved in the gen-
eration of the BOLD signal is needed. Sotero and Trujillo-Barreto
[23] proposed one of the more advanced models of the neurovas-
cular coupling, the Metabolic Hemodynamic Model (MHM)  linking
the excitatory/inhibitory activity to the fMRI signal taking into

account the metabolic effects such that the cerebral metabolic rate
of glucose consumption CMRGlc.

In this paper, we  propose a new approach to estimate the states
and parameters of the stochastic MHM  (sMHM), based on the SCKF
and MLE. To implement this approach we  need to maximize the
likelihood function (minimize the negative log-likelihood func-
tion). We  use a gradient-based minimization algorithm for finding
the minimum of the negative log-likelihood function, this requires
the computation of log-likelihood function and its gradient. The
log-likelihood function is approximated via the prediction error
decomposition, computed using the predicted measurement and
the innovation matrix from the SCKF measurement update steps.
We are using MATLAB version R2015b, if we  do not have gradients,
solvers approximate gradients by means of finite differences. So,
providing gradients can save time and increase the accuracy. The
common sources of error in finite differences are round-off error
and computer rounding, hence finite differences can lead to a futile
point. In this case, a solver can stop and supply a gradient allows it to
proceed. We show that the gradient of the negative log-likelihood
function can be computed analytically based on SCKF sensitivity
equations obtained by differentiating the SCKF equations. The new
method replaces the standard method based on Cubature Kalman
Filter (CKF) [24].

To demonstrate the effectiveness of the proposed method we fit-
ted the sMHM to synthetic data, and present the results to show that
the proposed solution methodology can obtain accurate estimates
of the hidden states and model parameters.

This paper is organized as follows: in Section 2 we  review the
sMHM,  its nonlinear continuous-discrete state space form, some
numerical approximation methods to solve such a system as well as
the proposed solution methodology. Section 3 is devoted to present
and discuss the results of the inversion and identification of two
nonlinear model with a special attention to the sMHM model.

2. Material and methods

Building models of the activity in the human brain, based on
neurophysiological data has practical applications. These models
are used to generate simulated neuroimaging signals, if we can
understand something from these signals maybe we can better
diagnosis brain diseases, brain disorders, and hence find the treat-
ment [25–27]. Another important use of this understanding of the
brain is to help design chips and computers which a brain like
and can be used in future robots, intelligent information systems
and Brain-Computer Interface BCI where the goal is to establish
nonmuscular connections between a human brain and computer
by translating the minds of a user into computer commands,
an interesting research in this field with some related methods
(computational algorithms) can be found in the papers recently
published by Zhang et al. [28,29] and Wang et al. [30]. Many of
these models are often formulated in continuous-discrete state
space form. One of these models called the stochastic metabolic
hemodynamic model (sMHM) [31] that will be the subject of this
research paper. The question that our research answers is: given
simulated data, how much of the true hidden states signals can we
recover from this simulated data, and what are the most probable
parameters that can generate the data?

The Kalman filter (KF) is originally developed to estimate the
states knowing the parameters. In practical models, the parame-
ters are usually unknown, this means that we have to perform a
complete inversion and estimate both the hidden states and param-
eters. There are several approaches that can be used to estimate
the states and parameters in a nonlinear discrete-time state space
model. Three methods are commonly used, dual filtering approach
[32] where two Kalman filters are run simultaneously in an iter-
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