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a b s t r a c t

This paper designs a high-gain predictor for output feedback control of nonlinear systems in the presence
of input, output, and state delays. The high-gain predictor realizes the states appearing in the output
feedback control in terms of predictive state, delayed state, and current state. The system includes
internal and external dynamics, and the closed-loop system under state feedback is required to be
asymptotically stable and locally exponentially stable. Positively invariant sets are found to verify
boundedness, exponential stability, andperformance recovery. In the simulation, a saturated slidingmode
control is applied to demonstrate the performance recovery of the closed-loop system, and the fact that
the high-gain-predictor parameter has a lower bound related to time delays.

Published by Elsevier Ltd.

1. Introduction

In output feedback control of time-delay systems, state ob-
servers may be used to reconstruct the unmeasured states
(e.g. Germani, Manes, & Pepe, 2012; Germani & Pepe, 2005). But
observer design for nonlinear time-delay systems is challenging.
Germani, Manes, and Pepe (2002) applied the Gronwall lemma
to provide sufficient conditions on delay for a chain observer
to prove exponential convergence of the estimation error. These
conditions were relaxed in Kazantzi and Wright (2005). A Lya-
punov–Krasovskii functional was introduced in Ahmed-Ali, Cher-
rier, and M’Saad (2009) such that a relationship between the delay
and the number of cascade observerswith specific vector gainswas
proposed. Many authors employed this method in the later work
(e.g. Ahmed-Ali, Cherrier, & Lamnabhi-Lagarrigue, 2012; Ahmed-
Ali, VanAssche,Massieu, &Dorleans, 2013; Farza, Sboui, Cherrier, &
M’Saad, 2010; Ghanes, Leon, & Barbot, 2013). The aforementioned
papers are devoted to proving the exponential convergence of the
observer estimation errors. Recently, Karafyllis, Krstic, Ahmed-Ali,
and Lamnabhi-Lagarrigue (2014) proved exponential stability of
the closed-loop system in a disturbance free case. Those techniques
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for predictors (e.g., Germani et al., 2002; Karafyllis et al., 2014),
work with time delays that are not necessarily small; however,
they require exactmodels of the system. An advantage of high-gain
observers is that we can dominate uncertain nonlinearities, while
the price for that is restricting the delay to be small. Another ad-
vantage of using high-gain observers is that they can recover the
performance of state feedback control.

In our previous work Lei and Khalil (2016), we used a high-gain
predictor in feedback-linearization control. The system considered
is nonlinear with time-varying input and output delays. To verify
the performance recovery, we constructed a Lyapunov–Krasovskii
functional, proved boundedness and exponential stability of the
closed-loop system, and found a lower bound on the high-gain pa-
rameter, which relates to the maximum of involved delays. This
work is an extension of Lei and Khalil (2016), which does the fol-
lowing: (1) we allow zero dynamics; (2) instead of feedback lin-
earization, we allow any stabilizing state feedback control; (3) we
allow state delay in addition to the input and output delays.

Notations. Throughout the paper, | · | means the absolute
value; I denotes the identity matrix; λ denotes the eigenvalues,
λmin(·) and λmax(·) are the minimum and maximum eigenvalues
of the matrix respectively; the superscript of ‘‘T’’ stands for the
transposition of a matrix; Rn denotes the n-dimensional Euclidean
space and ∥ · ∥ denotes the Euclidean norm; R+ represents the set
of non-negative real numbers; given a positive constant r ∈ R+,
L2 ([−r, 0]; Rn) denotes the space of square integrable functions
φ : [−r, 0] → Rn; Cn denotes the space of absolutely continuous
functions φ : [−r, 0] → Rn, which have square integrable first-
order derivatives; x : [−r,∞) → Rn is a function; x(t)means the
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value of x at t; xt is an element of Cn defined by xt(θ) = x(t + θ),
−r ≤ θ ≤ 0 with the norm ∥xt∥s = supθ∈[−r,0] ∥x(t + θ)∥ ≤ b,
where b is a positive constant; x(t; t0, φ) represents the solution
of the given time-delay system with initial time t0 and initial
condition φ; given a Lyapunov functional V (xt , ẋt , t) : Cn

× L2 ×

R → R+, V̇ (xt , ẋt , t) = limh→0+ sup 1
h [V (xt+h, ẋt+h, t + h) −

V (xt , ẋt , t)]; a scalar continuous function α(d), defined for d ∈

[0, d̄), belongs to class K if it is strictly increasing and α(0) = 0.

2. System description

Consider a time-delay nonlinear system represented by

η̇(t) = ϑ(ηt , ξt)

ξ̇ (t) = Aξ(t)+ B [ψ(ηt , ξt)u(t − τ)+ p(ηt , ξt)]
y(t) = Cξ(t − s)

(1)

where η ∈ Rι, ξ ∈ Rn−ι are the states, u ∈ R is the control input,
y ∈ R is the output. The functions ϑ(·), ψ(·), p(·) have multiple
state delays, e.g.,

ϑ(ηt , ξt) = ϑ

η(t), η(t − l̄1), η(t − l̄2), . . . , η(t − l̄m1);

ξ(t), ξ(t − l1), ξ(t − l2), . . . , ξ(t − lm2)


(2)

where l̄j (j = 1, 2, . . . , m1) and li (i = 1, 2, . . . , m2) are state
delays; ψ(·), p(·)may have similar forms of state delays; τ and s
are known sufficiently small input and output delays respectively;
and τ , s ∈ [0, r], where r = τ + s. The initial conditions ηt0
and ξt0 are bounded and

ξt0s ≤ κ1 with positive constant κ1.
The (n − ι) × (n − ι) matrix A, the (n − ι) × 1 matrix B, and the
1 × (n − ι)matrix C represent a chain of n − ι integrators. System
(1) is required to satisfy Assumption 1.

Assumption 1. (i) The nonlinear functions ϑ(·), ψ(·), p(·) are
locally Lipschitz.

(ii) ψ(·) ≠ 0 and 1/ψ(·) is locally Lipschitz.
(iii) The origin (ηt , ξt) = (0, 0) is an equilibrium point of the

unforced system; that is, p(0, 0) = 0 and ϑ(0, 0) = 0.

Consider a partial state feedback control of the form

u(t) = γ (ξ(t + τ), ξ(t + τ − l1), ξ(t + τ − l2), . . . ,

ξ(t + τ − lm2)


(3)

so that

u(t − τ) = γ

ξ(t), ξ(t − l1), ξ(t − l2), . . . , ξ(t − lm2)


, γ (ξt)

where the function γ (·) satisfies the following assumption.

Assumption 2. (i) γ (·) is a locally Lipschitz function in ξt .
(ii) γ (·) is globally bounded in ξt .
(iii) The origin of the closed-loop system

η̇(t) = ϑ(ηt , ξt)

ξ̇ (t) = Aξ(t)+ B [ψ(ηt , ξt)γ (ξt)+ p(ηt , ξt)]
(4)

is asymptotically stable with the region of attraction A ⊂ Cn,
and locally exponentially stable.

(iv) With χ = [ηT, ξ T]T, there exist a Lipschitz functional V1(χt),
and functions α1, α2, α3 of class K such that, for ∀χt ∈ A,

α1 (∥χ(t0)∥) ≤ V1(χt) ≤ α2

∥χt∥s


,

V̇1(χt) ≤ −α3

∥χt∥s

 (5)

and for any c > 0,Ωc = {V1(χt) ≤ c} is a compact set of A.

When the origin of the closed-loop system (4) is globally
asymptotically stable, the existence of V1(χt) satisfying (5) follows
from the converse Lyapunov theorem of Karafyllis (2006).

Remark 1. Global boundedness of γ (·) is typically required
in high-gain-observer designs to overcome the peaking phe-
nomenon. It is usually achieved by saturating γ (·) outside a com-
pact set of interest (see, Khalil, 2002).

Since the system (4) is locally exponentially stable, it is shown
in Lemma 1 of the Appendix, with ε = 1, that there exist a constant
b > 0 and a Lyapunov functional V2(χt) that satisfies

c1 ∥χt∥
2
s ≤ V2(χt) ≤ c2 ∥χt∥

2
s , V̇2(χt) ≤ −c3 ∥χt∥

2
sV2(χ

′′

t )− V2(χ
′

t )
 ≤ c4

χ ′′

t


s +

χ ′

t


s

 χ ′′

t − χ ′

t


s

(6)

in the setBb =

∥χt∥s ≤ b


for somepositive constants c1, c2, c3.

As an example of a control that satisfies Assumption 2, consider
a feedback linearizable state-delay system without input and
output delays as in Germani et al. (2012) and Germani and Pepe
(2005):

ξ̇ (t) = Aξ(t)+ B [ψ(ξt)u(t)+ p(ξt)]
y(t) = Cξ(t).

The feedback linearization control takes the form:

u(t) =
−p(ξt)− Kξ(t)

ψ(ξt)
, γ0(ξt)

where K is a gain matrix such that A − BK is Hurwitz. In view of
Assumption 1, γ0(ξt) satisfies (i) in Assumption 2; condition (iii) of
Assumption 2 is satisfied by design. Thus there exists a Lyapunov
function V1(ξ) = ξ T(t)P̄ξ(t) in which P̄ is the solution of the
Lyapunov equation P̄(A − BK) + (A − BK)TP̄ = −I so that the
compact set Ωc = {V1(ξ) ≤ c} ⊂ A is positively invariant. Then
we saturate the control γ0(ξt) outside the setΩc in the way of

u(t) = Ξ sat

γ0(ξt)

Ξ


, γ (ξt)

where Ξ ≥ maxξ∈Ωc |γ0(ξt)|. Therefore, for every ξ(0) ∈ Ωc ,
|γ (ξt)| ≤ Ξ . Now the function γ (ξt) satisfies all the conditions
of Assumption 2.

3. High-gain predictor design

Wewill use ξ̂ (t), ξ̂ (t−l1), ξ̂ (t−l2), . . . , ξ̂ (t−lm2) in the output
feedback control in order to replace the states ξ(t + τ), ξ(t + τ −

l1), ξ(t + τ − l2), . . . , ξ(t + τ − lm2) in the state feedback (3). We
now construct a high-gain predictor to generate ξ̂ (t) and delay it
in the observer equation according to the state delays.

The high-gain predictor takes the form

˙̂
ξ(t) = Aξ̂ (t)+ B


ψ0(ξ̂t)u(t)+ p0(ξ̂t)


+H


y(t)− C ξ̂ (t − s − τ)


(7)

with the initial condition ξ̂t0 satisfying
ξ̂t0s

≤ κ̂1, where κ̂1 is
a positive constant. The functions ψ0 and p0 are nominal models
of ψ and p; they are bounded functions of their arguments. The
observer gain H is given by H = [a1/ε, a2/ε2, . . . , an−ι/εn−ι]T,
in which ε is a small positive constant to be specified and aj (j =

1, 2, . . . , n − ι) are positive constants chosen such that all
the roots of the characteristic equation λn−ι + a1λn−ι−1

+ · · · +

an−ι−1λ+ an−ι = 0 have negative real parts.
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