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a  b  s  t  r  a  c  t

We  propose  to modify  the  method  of  nonlinear  state-space  projections  (NSSP)  by  application  of  the
technique  of  k-means  clustering.  NSSP  performs  reconstruction  of the  state-space  representation  of  the
processed  signals  using  the Taken’s  method  of  delays.  Then  it projects  each  state-space  point  on  the
appropriately  constructed  signal  subspace  and  recovers  the  one-dimensional  signal  by averaging  the
results  of  all  projections.  The  k-means  clustering  is  applied  to form  so-called  neighborhoods  on  the  basis
of  which  the  signal  subspaces  are created.  Within  these  neighborhoods,  local  density  around  each  state-
space  point  is  estimated,  to make  construction  of the signal  subspaces  more  immune  to high energy
electromyographic  noise.

The developed  method  is  applied  to process  different  types  of  ECG signals.  For  reference,  the  original
NSSP  method  and  its previously  developed  modifications  are  used.  In  different  types  of  noise  environ-
ment,  the  proposed  method  appears  more  effective  than  the  original  one  and  in most  cases  than  the
other  reference  methods.  Moreover,  visual  results  of fetal  phonocardiogram  and  electronystagmogram
processing  show  the  wide  range  of its possible  applications.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Human body is a source of a variety of signals. Most of these
signals contain valuable diagnostic information on the operation of
different organs. When we want to get information on one selected
organ, we must take into account that a mixture of interfering
signals usually recorded. In such a mixture, one particular signal
is regarded as the desired component, and the sum of the other
ones forms the undesired noise. Suppression of noise is the pri-
mary operation performed by most modern systems for biomedical
signal processing. To accomplish this operation, one needs a cri-
terion allowing to distinguish the desired component from noise.
One of the widely applied approaches uses spectral properties of
the processed signals to achieve the goal. If the spectra of the
desired component and noise do not overlap, the classical tech-
nique of linear filtering is often applied [1–5]. However, if the gap
between the desired signal and the noise frequency bands is not
sufficiently wide, a limited success can only be achieved, because it
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is impossible to design a filter with a very sharp cut-off, as the order
would be nearly infinite. When the spectral criterion fails, the other
ones must be used. A simple, yet very important one consists in
the assumption of the desired component repeatability. Employing
this criterion (complemented by a few additional conditions), we
can use the technique of synchronous averaging to suppress noise
[6–8]. Since the early 60s of the previous century, this approach has
successfully been applied to ECG signals enhancement [9]. How-
ever, with more and more advanced methods of ECG interpretation,
construction of the template showing the average morphology of
the signal, discarding its subtle changes from beat-to-beat, appears
to be a severe limitation of this technique.

With the progress in the field of nonlinear dynamical systems
analysis, a very promising technique of nonlinear state-space pro-
jections (NSSP) emerged [10,11]. This technique has successfully
been applied to suppress noise disrupting the ECG signal, and to
enhance the desired component preserving its morphological vari-
ability [12]. It has also been applied to fetal ECG extraction from the
maternal abdominal signals [13]. The other fields of NSSP appli-
cation encompass, e.g. respiratory sound filtering [14], nuclear
magnetic resonance (NMR) laser data [15], ballistocardiographic
signal separation [16], electroencephalogram enhancement in a
brain computer interface [17], analysis of voice signals [18,19] and
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even processing of the stellar light curves data [20,21]. Some new
approaches to refine NSSP operation were proposed in [22–24].

The criterion used by NSSP to distinguish the desired signal
and noise is associated with the state-space representation of both
components. The method reconstructs this form of the processed
signals using the Taken’s embedding technique of delays [25]. One
assumes that the state-space trajectory of the desired component
lies on or is very near to a smooth nonlinear manifold in the embed-
ding space. The equivalent form of the noise component is assumed
to spread without a similar confinement. Therefore, depending on
the noise level, the trajectory of the whole noisy signal is closer
to or farther from that of the desired component, and by push-
ing it towards this desired one, we should be able to achieve noise
suppression. To this end, for each point of the state-space trajec-
tory of the processed noisy signal, NSSP performs analysis of the
neighboring points to approximate linearly the globally nonlinear
manifold, and then it projects the point on the determined linear
subspace, to reduce its deviation from this manifold. Averaging of
the results of locally linear projections leads to globally nonlinear
noise reduction.

A  very important operation, realized for each state-space point is
construction of its neighborhood. Whereas in the original method
[12], neighborhoods contain the points which are nearest in the
embedding space, in [26] their location in time was  used instead.
Such approach could be applied to repeatable ECG signals, and
after synchronization of the ECG beats, it was the location within a
beat that was used as a criterion for neighborhoods construction.
With this modification, a great reduction of computational costs
was achieved, because instead of the computationally demanding
comparison of the state-space distances, the fast operation of QRS
detection was performed, and besides, all points having the same
location within the respective beats were projected on the same
subspace. In [27] this approach was modified by using the tech-
nique of dynamic time warping for neighborhoods determination.
As a result both time and spatial location in the embedding space
decided on the neighborhoods contents. With the decreased com-
putational costs, it was possible to apply a robust technique for
the linear subspaces construction, which resulted in great improve-
ment of the method ability to suppress noise [28].

Construction of neighborhoods is somewhat similar to the oper-
ation of data clustering. The primary difference from clustering is
that the number of groups (neighborhoods) is large and that they
can overlap among each other (the formed groups can contain the
same data points). The goal of this study is to apply the classical k-
means clustering to form neighborhoods, and to take into account
the state-space points density to develop an effective method of
linear subspaces construction. The rest of the paper is organized
as follows. In Section 2 an outline of the NSSP method is provided.
In Section 3 the modifications proposed are described. Numerical
experiments are presented in Section 4 and concluded in Section 5.

2. Nonlinear state-space projections

The method was developed for suppression of the measure-
ment noise, corrupting deterministically chaotic signals [10,11].
For such signals the assumption concerning location of the desired
component trajectory on a nonlinear manifold can strictly be satis-
fied: if a purely deterministic discrete signal is generated according
to the nonlinear map  s(n + m − 1) = f(s(n), s(n + 1), . . .,  s(n + m − 2)),
the nonlinear differentiable function f(·) forms m − 1 dimensional
nonlinear hypersurface (manifold) on which the trajectory evolves
(or is confined to) [29]. It was however shown [29] that for many
biomedical signals, the trajectories can also similarly be confined
(although they can rather be located near but not precisely on such

manifolds). Therefore the method was successfully applied, e.g. to
ECG processing [12].

The primary operation is the reconstruction of the state-space
representation of the observed noisy signal. To this end, the Tak-
ens embedding theorem [25] is applied, defining a point in the
constructed space using the delayed signal values

x(n) = [x(n), x(n + �), . . .,  x (n  + (m − 1) �)]�, (1)

where x(n) is the processed signal, � is the time lag (� = 1 appeared
advantageous in [12] and will be used in this study), m is the embed-
ding dimension (the Takens embedding theorem [25] assures that
for purely deterministic systems, under fairly broad conditions, the
reconstructed state-space trajectory is equivalent to the one in the
original phase space).

After the embedding operation has been accomplished, the non-
linear manifold, near which the desired component trajectory is
assumed to be located, can locally linearly be approximated. In the
original method [12], it is performed for each trajectory point, sep-
arately. Therefore, for each point, the distribution of the nearest
points is analyzed. First, a set containing these points is formed: it
is named simply as a neighborhood

� (n) =
{
k : ‖x(k) − x(n)‖ ≤ ε

}
, (2)

where ‖·‖ denotes the Euclidean distance; ε is the assumed radius
of neighborhoods.

We assume that embedding dimension m is greater than the
dimension of the manifold, and that the level of noise is smaller
than that of the desired signal. Therefore locally, within a neigh-
borhood the directions along which the neighborhood points have
maximal dispersion are used to span the desired signal subspace
whose orthogonal complement is regarded as the noise subspace.

Thus, within a neighborhood, locally linear approximation of the
globally nonlinear manifold can be realized by assuming that the
neighborhood mass center

x̄(n) = 1
|� (n)|

∑
k ∈ � (n)

x(k), (3)

(|� (n)| denotes the neighborhood cardinality) forms the origin of
the constructed linear subspace and that its axes correspond to the
directions of the neighborhood points maximal dispersion. If this
dispersion is measured by variance, the directions can be deter-
mined like in the classical principal component analysis [30], as
the eigenvectors of the covariance matrix

C(n) = 1
|� (n)| − 1

∑
k ∈ � (n)

(
x(k) − x̄(n)

)(
x(k) − x̄(n)

)�
, (4)

and x(n) can be projected on the subspace spanned by the eigen-
vectors associated with the largest eigenvalues. However, in [11]
it appeared beneficial to limit corrections of the first and the last
coordinates of the points under projection. To assure this, before
eigendecomposition of the covariance matrix it is modified using a
diagonal penalty matrix R: D(n) = RC(n)R.

Finally, a correction of x(n) is given by

x′(n) = R−1E(n)E(n)�R
(

x(n) − x̄(n)
)

+ x̄(n), (5)

where E(n) =
[

e(n)
1 , e(n)

2 , . . .,  e(n)
q

]
; e(n)
i

is the eigenvector of D(n) cor-

responding to the ith largest eigenvalue (it is the ith axis of the
constructed signal subspace). All diagonal elements of R are equal
to 1 except from r11 = rmm = r. It is a large value of r that assures
penalization of the corrections of both side coordinates.

The projections are performed for all points in the reconstructed
state space. Since a signal sample occurs in m different points (at
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