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a b s t r a c t

A generalization of the PIDρ−1 control has been recently presented in Marino et al. (2012), which
guarantees the output tracking of smooth periodic reference signals (with known period) for uncertain
minimum phase nonlinear systems in output feedback form with any relative degree ρ ≥ 1. In this
note, we show that the repetitive learning control proposed in Marino et al. (2012) also solves the same
output tracking problem for a larger class of uncertain nonlinear systems in normal form, provided that
the inverse system dynamics satisfy the Demidovich condition on suitable compact sets.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Considerable research efforts have been spent in the last
decades with the aim of addressing the existence of solutions to
the output tracking problem for uncertain nonlinear systems.

In the unfavourable case inwhich the uncertainties are unstruc-
tured, the repetitive learning control approach (see Xu & Tan, 2003
and Ahn, Chen, & Moore, 2007) can be successfully followed when
the output reference signals belong to the family of periodic time
functions with known period.

In this respect, the most recent results for special classes of
single-input single-output nonlinear systems can be found in
(i) Marino and Tomei (2009) for systems which are partially feed-
back linearizable by state feedbackwith linear exponentially stable
inverse system dynamics; (ii) Bifaretti, Tomei, and Verrelli (2012)
for nonlinear systems with matching uncertainties; (iii) Marino,
Tomei, and Verrelli (2012) for minimum phase systems in output
feedback form with output dependent nonlinearities; (iv) Jin and
Xu (2013) for nonlinear systems in normal form with no inverse
system dynamics.

In this note, the above design techniques are used in con-
junction with the notion of exponentially convergent systems
(see Pavlov, van de Wouw, & Nijmeijer, 2006) in order to solve
the output tracking problem for the larger class of uncertain
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nonlinear systems in normal form with inverse system dynam-
ics satisfying the Demidovich condition on suitable compact sets.
Differently from Jin and Xu (2013), the presence of uncertain in-
verse systemdynamics is allowed,while in contrast toMarino et al.
(2012), Marino and Tomei (2009), and Bifaretti et al. (2012) the in-
verse system dynamics are not restricted to be linear.

The resulting control design alongwith the related convergence
analysis are not straightforward since nonlinearities appear
and they are not exclusively output-dependent; nevertheless,
the existence of a suitable periodic solution is no longer
straightforward to be proved.

Those specific features appear in Consolini and Verrelli (2014)
when a learning control for autonomous vehicles reproducing
the human driver behaviour (which thus represents a special
application of the general theory presented in this note) is designed
to track planar curveswith uncertain periodic curvature.1 The first
order inverse dynamics, which are expressed in the independent
variable s (curvilinear abscissa), in the presence of the uncertain
periodic s-function κ(s) and of the positive real l, are η′(s) =

− sin


η(s)+y(s)
l


− lκ(s). According to Theorem 2.41 and Definition

2.20 in Pavlov et al. (2006), the above dynamics represent a locally
exponentially convergent system for the class of bounded inputs
on [0, +∞) (i.e. there exists a neighbourhood Z of the origin and
a positive real ρ such that the previous system is convergent in Z

1 In particular, Consolini and Verrelli (2014) (see references therein for
the general problem description) addresses the path-following problem for
autonomous vehicles in which the goal is to steer the vehicle to reach and follow an
uncertain periodic geometric path with specific constraints.
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for all inputs on [0, +∞) whose modulus is less than ρ for any s).
Additional technical difficulties arise since an uncertain nonlinear
state function (in contrast to Bifaretti et al., 2012; Marino & Tomei,
2009; Marino et al., 2012) is allowed, in this note, to multiply the
control input.

2. Problem statement

We address the output tracking problem in which the output y
of the nonlinear time-invariant single input-single output system
(f (·) and g(·) are suitable uncertain smooth vector fields on Rn,
while h(·) : Rn

→ R is a suitable uncertain smooth function)

ẋ = f (x) + g(x)u
y = h(x) (1)

is required to track a smooth periodic reference signal y∗(t) (with
known period T ):

y∗(t + T ) = y∗(t), ∀ t ≥ −T . (2)

In particular, we assume that the global relative degree ρ ≤ n
is known and well defined for (1) and that system (1) is globally
input–output linearizable (see Isidori, 2013) so that we may
directly consider its normal form

ż = φ(z, ξ)

ξ̇j = ξj+1, j = 1, . . . , ρ − 1 (3)

ξ̇ρ = Lρ

f h(x) + LgL
ρ−1
f h(x)u .

= q(z, ξ) + b(z, ξ)u
y = ξ1

in which z = [z1, . . . , zn−ρ]
T, ξ = [ξ1, . . . , ξρ]

T are the new vector
coordinates, with ξ being available for feedback.

Let BBM (0) be the closed ball in Rn (with centre at the origin)
of sufficiently large radius BM ; BBM∗

(0) be the closed ball in Rn−ρ

(with centre at the origin) of sufficiently large radius BM∗; BBMξ
(0)

be the closed ball in Rρ (with centre at the origin) of sufficiently
large radius BMξ < BM and containing the vector ξ∗(t) = [y∗(t),
y(1)
∗ (t), . . . , y(ρ−1)

∗ (t)] for any t ∈ R (the components of the
vector ξ∗(t) are constituted by the time derivatives of the output
reference signal y∗(t), which are assumed to be available for
feedback).

We assume that (i) for any z ∈ Rn−ρ and any ξ ∈ BBMξ
(0)

there exist symmetric positive definite matrices P and Q (possibly
depending on BMξ ) such that the Demidovich condition (see Pavlov
et al., 2006)

P
∂φ(z, ξ)

∂z
+

∂φT(z, ξ)

∂z
P ≤ −Q (4)

holds; (ii) for any z ∈ BBM∗
(0) and any ξ, ξ̄ ∈ BBMξ

(0) (ξ̄ =

[ξ̄1, . . . , ξ̄ρ]
T) the following inequality

∥φ(z, ξ) − φ(z, ξ̄ )∥ ≤ αφ∥ξ − ξ̄∥ (5)

holds in terms of the positive real αφ (possibly depending on
BM∗ and BMξ ); (iii) for any (z, ξ), (z̄, ξ̄ ) ∈ BBM (0) the following
inequalities

|q(z, ξ) − q(z̄, ξ̄ )| ≤ αq∥(z, ξ) − (z̄, ξ̄ )∥

|b(z, ξ) − b(z̄, ξ̄ )| ≤ αb∥(z, ξ) − (z̄, ξ̄ )∥ (6)
b(z, ξ) ≥ bm, |q(0, 0)| ≤ γq, |b(0, 0)| ≤ γb

hold in terms of the positive reals αq, αb, bm (possibly depending
on BM ) and γq, γb.

In accordance with Section 1, condition (i) implies that the in-
verse system dynamics constitute a globally exponentially conver-
gent systemwith the uniformly bounded steady-state property for

the class of inputs PC(BBM (0)) (see the subsequent Remark 1). For
linear inverse system dynamics ż = Γ z + Θξ , condition (i) is
always satisfied when Γ is Hurwitz so that the results in Marino
et al. (2012), Marino and Tomei (2009) for minimum phase sys-
tems are generalized in this note to the case of nonlinear inverse
dynamics. The problem of the existence of a periodic solution for
the tracking dynamics (which is implied by the minimum phase
linear nature in Marino et al. (2012) (and related papers) and fol-
lows on the Brouwer’s Fixed Point Theorem for the specific, first
order example in Consolini and Verrelli (2014)), is thus here gen-
erally solved through the (more general) Demidovich condition. On
the other hand, conditions (ii)–(iii) are rather standard in repetitive
learning control scenarios (see Marino et al., 2012). In particular,
the conditions (ii) and (iii) are ‘‘non-global’’ versions of the condi-
tions in Marino and Tomei (2009), Bifaretti et al. (2012), Jin and Xu
(2013) involving ‘‘global’’ bounding functions. Those ‘‘non-global’’
conditions, along with assumption (i), allow to prove that the sub-
sequent simple straightforward generalization (7) of the PIDρ−1

control solves the output tracking problem for the class of systems
(3) for any initial condition with a properly dependent choice of
the user-defined constant control gains ki, 1 ≤ i ≤ ρ.

Remark 1. Here we use the notation of Pavlov et al. (2006): (i)
a function w(·) : R → W belongs to the class PC(W ) if it is
piecewise continuous and if there exists a compact set KW ⊂ W
such thatw(t) ∈ KW for all t ∈ R; (ii) a system ż = φ(z, w) (φ(·) is
sufficiently smooth) is said to be globally exponentially convergent
for the class of inputs PC(W ) if it is globally exponentially
convergent for every inputw ∈ PC(W ), i.e. if there exists a solution
z̄w(t) (depending onw(t)) that is defined and bounded for all t ∈ R
and it is globally exponentially stable; such a system additionally
possesses the uniform bounded steady-state property if for any
compact set KW ⊂ W there exists a compact set Kz ⊂ Rn−ρ

such that for any input w ∈ PC(W ) the following property holds:
‘‘w(t) ∈ KW , ∀ t ∈ R implies z̄W (t) ∈ Kz, ∀ t ∈ R’’.

Remark 2. The approach presented in Xu, Huang, and Jiang (2013)
is limited to the case in which the reference y∗ is generated by
finite-dimensional exosystems with the existence of solutions to
the regulator equations being a priori assumed (along with the
integral input-to-state stability property for the inverse tracking
error system dynamics).

We now recall the notation in Marino et al. (2012), whose
results are to be extended in this note. Let ỹ = y−y∗ be the output
tracking error; µ, Mu be positive control parameters; satMu(·) :

R → [−Mu,Mu] be a continuous odd increasing function
satisfying satMu(q) = q for any q ∈ (0,Mu] and satMu(q) = Mu for
any q > Mu; ϕ(·) : R+

∪ {0} → [0, 1] be a continuous increasing
function for t ∈ [0, T ] with ϕ(0) = 0 and ϕ(t) = 1 for any t ≥ T .

The main purpose of this note is to prove that the straightfor-
ward generalization of the PIDρ−1 control (c(ρ) = 0 if ρ = 1,
c(ρ) = 1 if ρ > 1):

u(t) = −kρ


c(ρ)

ρ−1
i=1

kiỹ(i−1)(t) + ỹ(ρ−1)(t)


+ û∗(t)

û∗(t) = satMu


û∗(t − T )


− µϕ(t)


c(ρ)

ρ−1
i=1

kiỹ(i−1)(t) + ỹ(ρ−1)(t)


û∗(t) = 0, ∀ t ≤ 0, (7)

which has been recently presented in Marino et al. (2012) and
adapted in Consolini and Verrelli (2014) to the case of spatial
coordinate periodicity, solves (for any initial condition with a
properly dependent choice of the constant user-defined control
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