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a  b  s  t  r  a  c  t

A  computer  aided  detection  scheme  for the  neural  tube  defect  of spina  bifida  is  proposed.  Features  from
Zernike  moments  of fetal  skull  regions  viewed  by ultrasound  are  utilized  in  SVM  classification.  Rotational
invariance  of magnitudes  of Zernike  moments  and  their easy  normalization  with  respect  to  translation
and  scale  make  them  attractive  for image  and  shape  description.  In  particular,  they  are  perfect  candidates
for  classifying  shapes  of  fetal  skulls  that  possess  markers  of spina  bifida.  The  automated  detection  system
may  act  in  decision  support  to help  specialists  avoid  false  negatives.  Problems  of rarity  are  handled  with
combinations  of oversampling  and  undersampling.  A  variant  of the  synthetic  minority  oversampling  tech-
nique  (SMOTE)  and  random  undersampling  (RU)  have  been  applied  on  training  data.  Experiments  show
the  trade-off  in  various  performance  indicators  depending  on  different  sampling  choices.  The  average
values  of  0.6276  F-measure  and  0.6306  GMRP  are  achieved  on  non-sampled  (original)  test  sets  when  train-
ing is  performed  using  sampled  data  after  400%  borderline-SMOTE  followed  by  50%  RU  with  respective
accuracy  and  specificity  realizations  of 94%  and  98%.
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1. Introduction

Computer aided diagnosis/detection (CADx/CADe) is an inter-
disciplinary area aiming to play a supporting role in medicine.
Digital processing of radiological images and machine learning are
combined in CAD systems. Inputs comprise images of magnetic
resonance imaging (MRI), computed tomography (CT), X-ray and
ultrasound (US) modalities. In CAD systems, regions of interest
(ROI) in images are analyzed and the goal is to detect conspicuous
tissues/structures. Examples of CAD include detecting malignant
pulmonary nodules [1], mammographic masses [2], soft tissue
tumors [3], some cancers [4,5] and many more.

In this work, a CAD system for detecting the neural pathology
of spina bifida from fetal ultrasound (US) images has been imple-
mented. Spina bifida (open/split spine) is a common birth defect
from the category of neural tube defects (NTD) which affects the
spine and spinal cord. The stages in embryo development involve
nervous system formation during which the neural plate tissue
folds to form a tube which further folds into the spinal cord. The
incorrect folding of the neural plate may  cause spina bifida to give
rise to an abnormally formed section of the spinal column. The
defect may  cause bladder control problems, sensation loss and
paralysis. Fig. 1 shows US images of an axial spine, a sagittal spine
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and a transcerebellar skull, all associated with defective fetuses.
The worldwide prevalence of spina bifida is one-two cases per 1000
births.

US screening and examination can let diagnose neural tube
defects. Detecting spina bifida as early as possible in the prenatal
stage is vital for careful planning and remedies. Besides observing
the spine, markers of fetal skulls also help in the diagnosis. Check-
ing the existence of these markers is easier for machine processing.
A typical marker associated with skull shapes is the lemon sign [6]
which appears when the frontal bones of a skull look flattened and
inwardly bent. The malformed fetal skull in Fig. 1 is one with lemon
sign.

Recognizing a defective fetus is naturally a two-class classi-
fication problem (i.e. defective (positive) or healthy (negative)).
Solutions for the problem have been attempted in previous
research. The methods rely on features of skull contours [7,9,10]
and regions [8]. The decision rules have generally exploited the
existence of lemon sign [6]. Either thresholds [7,9], SVMs [8] or
nearest neighbors [10] have been used for classification.

The earliest work [7] considers segmentation as part of the
problem and fits elliptical models to detect contour segments on
skull boundaries. The longest of the several detected segments is
assumed to be indicative of the defect. Deciding whether a fetus
is defective is based on the fraction of segment points (i.e. pixels),
that do not match the expected pattern of slope values of tangent
lines for a healthy appearance. Absolute values (i.e. magnitudes)
of Zernike moments and SVMs have been used in another work
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Fig. 1. Axial spine (top-left), sagittal spine (top-right) and transcerebellar skull (bottom) sonograms of fetal spines with spina bifida.

[8]. Both transcerebellar skull and axial spine images of fetuses
have been considered for a more secure detector. The drawbacks
include adhoc approaches for segmenting skulls [7,8] and spines [8]
in addition to the uncertainty in the number of Zernike moments
that should be used [8].

The latest two efforts [9,10] have benefited from the curvature
scale space (CSS) [11–14] representation of curves to extract skull
features. CSS provides descriptions of contours at multiple scales
(levels of detail (LOD)). The CSS representation of sampled con-
tour points has allowed measuring the similarity of shapes in a
framework with scale, translation and rotation invariance. Classi-
fication relies on either comparing the similarity scores of input
CSS images to thresholds determined from a set of training images
belonging to two distinct classes [9] or the simple nearest neighbor
classifier operating on similarity scores of data samples to those
in training sets [10]. The methods have been tested with the same
data set utilized in this paper. This is a relatively richer data set
(29 defective and 329 healthy samples). The weakness of thresh-
old selection mechanisms and the absence of rare class handling
sacrifice from robustness in the work of [9]. Combinations of over-
sampling and undersampling have been employed to handle class
rarity and imbalance in [10]. The classification performances of
nearest neighbor classifiers have been reported on a variety of
settings depending on different types of CSS features (i.e. how sim-
ilarity scores are computed) and utilizing only the actual contours
of skulls in CSS matching or utilizing both actual contours and their
reflections on a circular mirror centered at the center of gravity of
actual contours [15]. Although the system has shown to perform
well for some settings, one may  deem that sampling is not satis-
factory enough. Furthermore, the property of interpretability of a
parametric classifier is missing.

The current work is based on detecting lemon sign associated
with fetal skulls to decide if a fetus is defective. Lemon sign is an
entity along skull contours. It is equivalently connected with shapes
of skull regions. From a general viewpoint, representing 2D planar
shapes can be performed with various methodologies. Zhang and
Lu [16] provide a review of shape representation techniques. The
shape features subject to the work of this paper are derived using
Zernike moment transforms [17,18] of fetal skull shapes. Magni-
tudes of Zernike moments computed up to a certain order are used
with an SVM (support vector machines) classifier. Attributable to

their orthogonality property, Zernike moments have been popu-
lar for shape representation and classification. The combination of
magnitudes of Zernike moments used as shape features and SVM
[19–21] as classifiers is appropriate, because magnitudes of Zernike
moments are rotation-invariant, translation and scale normaliza-
tions are easy and SVM is state-of-the-art.

Besides the main building blocks, the rarity of samples used
to train the classifier is another issue. There may  be two  types of
data rarity in a two-class problem. The number of available sam-
ples may  be few (i.e. absolute rarity) or the members of one class
may  be much fewer than those of the other (i.e. relative rarity or
the class imbalance problem). Such training data induce improper
classifier design because available instances can not partition and
represent the input space well enough. This degrades the accu-
racy and generalization capability of classifiers. In addition, the
classical performance metric of accuracy is not satisfactory since
positive (rare) and negative (frequent) class decisions are equally-
favored leading to incorrect conclusions. As a matter of fact, the
US image samples of this work highly reflect the properties of
absolute and relative rarity. Tackling rarity is generally by modi-
fying data distributions to represent rare classes satisfactorily in
the input space. Sampling [22] is a common approach. Boosting
refers to general sampling where weights on training samples are
iteratively updated so that base learners can focus on examples
that were misclassified in previous iterations. Sampling techniques
include undersampling and oversampling. Undersampling discards
some frequent (majority) class samples from the training set and
oversampling adds exact copies of rare (minority) class instances
to it. A more prominent oversampling approach is the synthetic
minority oversampling technique (SMOTE) [23] which generates
synthetic rare class samples using each rare sample and its k nearest
neighbors. Borderline-SMOTE [24] is a variant which synthesizes
new samples only for those rare class samples that are prone to
classification error. The CAD system exploits borderline-SMOTE
and random undersampling (RU). The classification performance is
reported through receiver operating characteristics (ROC) analysis
[25] and the associated area under the ROC curve (AUC) [26] in addi-
tion to the point metrics of accuracy, recall, precision, specificity,
GMRP (geometric mean of recall and precision) and F-measure.

A block diagram of the proposed CAD system is presented in
Fig. 2. In an ideal scheme, the working system includes an auto-
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