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a  b  s  t  r  a  c  t

Signal  analysis  involves  identifying  signal  behaviour,  extracting  linear  and non-linear  properties,  com-
pression  or expansion  into  higher  or  lower  dimensions,  and  recognizing  patterns.  Over  the  last  few
decades,  signal  processing  has taken  notable  evolutionary  leaps  in  terms  of  measurement  – from  being
simple  techniques  for  analysing  analog  or digital  signals  in time,  frequency  or  joint  time–frequency  (TF)
domain,  to being  complex  techniques  for analysis  and  interpretation  in  a higher  dimensional  domain.
The  intention  behind  this  is simple  – robust  and  efficient  feature  extraction;  i.e.  to  identify  specific  signal
markers  or  properties  exhibited  in one  event,  and  use  them  to  distinguish  from  characteristics  exhibited
in  another  event.  The  objective  of  our  study  is to  give  the reader  a bird’s  eye  view  of  the biomedical  signal
processing  world  with  a zoomed-in  perspective  of  feature  extraction  methodologies  which  form  the  basis
of machine  learning  and  hence,  artificial  intelligence.  We  delve  into  the vast  world  of  feature  extraction
going  across  the  evolutionary  chain  starting  with  basic  A-to-D  conversion,  to  domain  transformations,
to  sparse  signal  representations  and  compressive  sensing.  It should  be  noted  that  in this  manuscript  we
have  attempted  to explain  key  biomedical  signal  feature  extraction  methods  in  simpler  fashion  without
detailing  over mathematical  representations.  Additionally  we  have  briefly  touched  upon  the aspects  of
curse and  blessings  of  signal  dimensionality  which  would  finally  help  us in  determining  the  best  com-
bination  of  signal  processing  methods  which  could  yield  an  efficient  feature  extractor.  In  other  words,
similar  to how  the  laws  of science  behind  some  common  engineering  techniques  are  explained,  in  this
review  study  we  have  attempted  to postulate  an approach  towards  a meaningful  explanation  behind
those  methods  in  developing  a convincing  and  explainable  reason  as  to which  feature  extraction  method
is  suitable  for  a given  biomedical  signal.
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Fig. 1. Evolution of biomedical signal feature extraction.

1. Introduction

Signals are omnipresent. This statement certainly holds true
when we are able to represent most stationary and non-stationary
phenomenon in mathematical expressions. These representations
are able to give us keen insights into those phenomena, and help
us in identifying characteristic patterns of interest. Signal process-
ing involves analysing analog/digital signals with the intention of
measurement, reconstruction, quality improvement, compression,
feature extraction and pattern recognition. Advancements in sensor
technologies have come a long way by making signal data acquisi-
tion, storage and analysis easier, as well as opening doors for further
improvisation considering unstructured big data (Fig. 1).

Someone might ask “If signal analysis should be easier to achieve
with developments in signal processing algorithms, then how come
we have to deal with increasingly complex mathematical repre-
sentations and optimization problems?” The only suitable answer
to this would be that – modern day information theory relies
extensively on big data signals being churned out by sensors from
our natural and digital environments, and treating these signals
requires algorithms that are highly efficient in storage and com-
putation. Although the underlying algorithms constitute complex
mathematical operations, the flow of code is designed with the
intention of processing maximum amount of signal data and dis-
covering characteristic patterns in shortest time possible. This
would be conducive only if we are able to seamlessly stream and
process data. This in turn motivates us to design better tools for cap-
turing useful information from signals at the source, and discarding
unwanted signal artefacts, which would also lead to hardware
optimization. As a quick remark, we would like to highlight that
this concept has been successfully implemented in state-of-the-art
compressive sensing techniques for signal acquisition, analysis and
reconstruction.

1.1. Evolution of feature extraction methods

In simple terms, feature extraction is the process of unveiling
hidden characteristic information about the input signal and its
behavior of its sources. That is, we are able to represent a given input
signal by a set of features which represent a specific behavior or pat-
tern depicted by the signal; or a compact or useful representation
of the signal [1–5]. Feature extraction is usually a dimensional-
ity reduction or data compression/reduction process and helps in
reducing the number of resources required to analyze an input
signal. In other words, given a large input signal with multiple
redundant components, performing feature extraction on it would
yield a smaller set of representative data which could describe the
original signal with sufficient accuracy and also help in building an
efficient and robust pattern classifier system [1,6–10].

We suggest that the user derives application-dependent fea-
tures rather than generic features, as they would better suit and
depict signal behavior and underlying patterns. For example, when

Fig. 2. Example of pattern classification.

we are attempting to analyze and classify music signals, we do
not need mean or variance of the signals or even its root mean
squares (RMS), since the room or environment settings will be
tuned accordingly, but we might need to use them when audio
signals are taken from non-modifiable sources. Before we proceed
with extracting information from signals, we usually discretize the
continuous analog signals into discrete digital signals using an A-to-
D converter. This helps in identifying characteristic patterns over
discrete time-intervals which otherwise cannot be observed if the
signal is processed in analog form (Fig. 2).

At grass roots level, the easiest way to analyze time-domain
signals is by filtering them, which helps in removing unwanted
artefacts from the signals such as overlapping noise, third
party/source components or values, and unwanted signal patterns.
The most appropriate method for signal pre-processing method
will be the one that can produce an output most suited to fea-
ture extraction. This method can be devised through two possible
approaches: (a) if the artifact characteristics (such as noise pat-
terns) are known, we  can design appropriate signal filters, or (b)
if the artifact properties are unknown, we  need to pre-process the
signal using trial and error approaches. Let us review some fea-
ture extraction methodologies applied to real-world biomedical
signals in the past few decades. To make it simpler for the reader, let
us group all the available signal processing and feature extraction
techniques into the following four generations:

(1) Time domain
(2) Frequency domain
(3) Joint time–frequency domain
(4) Signal decomposition and sparse domains

The reader may  note that the list of methods included in our
review is by no means exhaustive, and that we have studied
some key feature extraction methods in biomedical signal pro-
cessing, and have attempted to find out the most efficient method
from each generation. This study will further define the criteria
to design an intelligent feature extractor specific for biomedical
signals. In order to better explain and demonstrate our views on
various feature extraction techniques, we have running examples
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