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a  b  s  t  r  a  c  t

Ambiguous  imaging  appearance  of  Glioblastoma  Multiforme  (GBM)  and  solitary  Metastasis  (MET)  is a
challenge  to  conventional  Magnetic  Resonance  Imaging  (MRI)  based  diagnosis,  leading  to  exploitation
of  advanced  MRI  techniques,  such  as  Diffusion  Tensor  Imaging  (DTI).  In  this  study,  3D tumor  models
are  generated  by  a DTI  clustering  segmentation  technique,  providing  up  to 16 brain  tissue  diffusivities,
complemented  by  T1  post-contrast  imaging,  resulting  in the  identification  of  tumor  core,  whose  surface
is  refined  by  a Morphological  Morphing  interpolation  technique.  The  3D  models  are  analyzed  in  terms  of
their surface  and  internal  signal  variations  characteristics  towards  identification  of  discriminant  features
for  differentiation  between  GBMs  and  METs,  utilizing  a case  sample  composed  of  10  GBMs  and  10  METs.
Morphology  analysis  of  tumor  core  surface  is  assessed  by  5 local  curvature  features.  Texture  analysis
considers  11 first  and  16  second  order  3D  textural  features.  From  the  16 second  order  features,  11  are
based  on  Gray  Level  Co-Occurrence  Matrices  (GLCM)  and  5 on  Gray  Level  Run  Length  Matrices  (GLRLM),
calculated  from  DTI  isotropic  and anisotropic  parametric  maps,  corresponding  to  3D  tumor  core seg-
mented  from  the  clustering  technique.  Also,  3 different  image  quantization  levels  (QL)  were  tested  for
both  GLCM  and  GLRLM  analysis,  while  1–4  pixel  displacements  (D)  in  case  of  GLCM  analysis.  Case  sample
distributions  of morphology  and  texture  features  were  analyzed  using  the  Mann-Whitney  U test,  with
a  cut-off  value  of  0.05  to identify  discriminant  features.  The  discriminatory  performance  of  the  derived
features  was  analyzed  with  Receiver  Operating  Characteristic  (ROC)  curve  analysis.  Results  highlight  the
value  of all  5 local  curvature  descriptors  to capture  differences  between  the  boundary  of GBMs  and  METs.
Histogram  analysis  of  isotropy  maps  revealed  statistical  significant  differences  for  median  value  and  kur-
tosis, while  7  out  of the  11  GLCM  features  were  capable  of  discriminating  heterogeneity  of anisotropic
diffusion  properties  of GBMs  and  METs, at QL  = 6 and  D  = 2.  Finally,  all 5 GLRLM  features  extracted  from
diffusion  isotropy  maps  seem  to discriminate  structural  properties  of  GBMs  and  METs,  at  QL  = 5.  Results
demonstrate  the  potential  of  surface  morphology  and  texture  analysis  of 3D  tumor  imaging  appearance
in  pre-treatment  brain  MRI  tumor  differentiation.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Preoperative differentiation of brain tumors is critical for adapt-
ing treatment strategies, as well as for evaluating tumor response
to therapy. However, differentiation solely relying on conven-
tional Magnetic Resonance Imaging (MRI) remains a challenge,
due to ambiguous tumor imaging characteristics. Glioblastoma
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Multiforme (GBM) and solitary Metastasis (MET) are common brain
tumors, which represent a characteristic example of such a diag-
nostic problem, sharing similar characteristics, like a low signal
necrotic region, the extended region of peritumoral edema, and the
rim − enhancement region in T1 post contrast images, resulting
from the leakage of the contrast agent, due to the Blood-Brain-
Barrier (BBB) disruption.

Although histopathological analysis of biopsy samples is the
gold standard for establishing diagnosis, it is not always feasible,
because it is an invasive procedure, while it samples only a limited
portion ©f  the lesion tissue. This has led to the exploitation of a
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variety of advanced MRI  techniques, which provide structural and
functional information of tumors, achieving improved performance
as compared to conventional MRI. More specifically, Diffusion
imaging presents tumors microstructure and micro-architecture
by means of water molecules diffusion properties [1,2]. Dynamic
Perfusion Imaging, resulting from the analysis of contrast agent’s
mobility, injected into the human body, can give detailed infor-
mation regarding tumor vascularity and cellularity [3]. Finally, MR
Spectroscopy is able to reveal the tumors biochemical profile in a
completely noninvasive way [4].

In addition to advanced MRI  techniques, image analysis schemes
have been recently introduced regarding exploitation of quanti-
tative tumor imaging parameters, in terms of tumor morphology
and/or texture. The justification for morphology analysis is based on
the fact that GBMs are usually invasive, mostly along white matter
(WM)  tracts, leading to more complex tumor boundary, while METs
expand more homogeneously, in the junctions between white and
gray matter, resulting in a more spherical shape (encapsulated).
Recent studies reporting on morphology analysis of GBM and MET
have utilized generic tumor shape features applied on 2D tumor
segments derived from representative slices [5–7] and local curva-
ture features applied on 3D tumor surfaces [8].

Texture analysis is used for the identification of tumor’s signal
variations, possibly connected to their underlying pathophysiolog-
ical characteristics. Regarding GBMs and METs, previous studies
[6,9, and 10] based on texture features, obtained from conventional
or advanced MR  images, have reported successful differentiation
results by means of quantifying the different levels of tumors’ het-
erogeneity.

In this study, morphology and texture features of 3D tumor
models are investigated towards differentiation of GBM and MET.
3D tumor models are generated by a Diffusion Tensor Imaging
(DTI) clustering segmentation technique, complemented by post-
contrast T1 imaging, resulting in the identification of tumor core,
whose surface is refined by a Morphological Morphing interpo-
lation technique. Morphology analysis of tumor core surface is
assessed by five local curvature features. Texture analysis consid-
ers first and second order 3D textural features, calculated from DTI
isotropic and anisotropic parametric maps. Texture analysis targets
the tumor core active region, exploiting the outcome of the DTI
clustering segmentation technique, as tumors’ necrotic and cystic
components are expected to contribute less in the profile of hetero-
geneity. Morphology and Texture features differentiation ability is
tested in terms of statistical significance of sample statistics, and
Receiver Operating Characteristic (ROC) analysis.

2. Image segmentation

2.1. Image segmentation

In clinical routine, at first approximation, tumor core’s rough
delineation is manually performed by radiologists in MR images,
with the help of T1 post contrast and T2 images, which
present enhancement regarding tumor borders and edematoge-
nous regions, respectively. However, manual segmentation of
tumor core is time consuming and inaccurate, in terms of intra-
or inter-operator variability errors [11]. The low degree of repro-
ducibility of tumor manual segments is anticipated to affect
subsequent measurements (imaging biomarkers), a main drawback
in evaluation and comparison of reported literature results. This is
important in the field of computer aided diagnosis, where a more
systematic study of imaging biomarkers is required.

In the literature, a variety of semi or fully automated meth-
ods exist, which aim to distinguish and efficiently describe brain
tissue’s component anatomical areas (WM,  GM,  CSF), as well as

brain tumor different parts (active, necrotic and edematogenous
regions). Their clinical acceptance depends on algorithm efficiency,
computation simplicity as well as degree of user’s supervision [12].

In intensity based methods the generation of segmented regions
relies on the classification of image voxels into groups according to
their intensity. The simplest way regards the application of thresh-
olds in image corresponding histograms. The main disadvantage
of the thresholding methods is the spatial incoherence (scattering)
presented in segmented regions, as this method doesn’t take into
account pixels neighborhood information. Region growing meth-
ods are an evolution, where segments coherence is obtained via the
application of conditions by the user, such as homogeneity criteria
between neighboring voxels and mostly the inclusion of manually
induced seed voxels in the final segment [13].

Recently, voxel classification and clustering algorithms have
become very popular in MRI  segmentation [5,11,14] as an efficient
description of neuroanatomical and neuropathological tissue con-
trast information regarding the whole brain, may  be achieved with
minimum user’s interaction. More specifically, classification and
clustering algorithms, such as k-NN, k-means and fuzzy c-means,
are used for classifying image histograms data points into one or
more overlapping or non-overlapping sets, presenting intensity
values, accounting for similar tissue properties [11]. Also, in the
recent literature, a variety of classification methods can be found,
utilizing sophisticated algorithms, coming from the evolving field
of machine learning [15–17].

In addition, Atlas Based methods relying in prior knowledge
about brain anatomical structures stored in MR  images atlases, to
which the patients’ images are registered. In this way, alterations
in normal structure properties are correlated with various brain
diseases [18].

Finally, surface-based methods, including active contours and
active surfaces, implement deformable geometric models which
segment anatomical structures [19].

In this study, a proposed DTI clustering segmentation tech-
nique is implemented, which classifies a given set of elements (i.e.
brain voxels) into groups corresponding to similar isotropic and
anisotropic diffusion properties, by means of a k-medians algo-
rithm. Specifically, k-medians clustering is applied on the proposed
p-q space [14], which is a 2D histogram of p (isotropic) and q
(anisotropic) components of the diffusion tensor (Fig. 1), derived
from all patient cohort. K-medians was selected, as compared to
k-means or fuzzy c-means, as p and q histograms present a non-
normal distribution, and moreover because the patient sample used
for the classifier training in the present study is small.

Starting with K initial clusters definition, the algorithm: (i)
assigns the data points into k disjoint subsets by minimizing
the within cluster sum of 1-norm (cityblock) distances (Eq. (1)),
between each point and the respective cluster’s centroid,

J =
∑K

j=1

∑
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where xn the nth data point and �j the geometric centroid of the
data points in Sj, and (ii) new cluster centroids are computed (Eq.
(2))
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Steps i and ii are repeated until convergence, i.e. the energy function
J reaches its minimum value.

Selection of k = 16 according to [14], is adopted, as adequately
accounting for tissue diffusivities encountered in the brain, includ-
ing white matter, gray matter, cerebrospinal fluid, edema, tumor’s
active, cystic and necrotic regions. Initially, clusters are defined by
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