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a  b  s  t  r  a  c  t

The  ultimate  goal  of  an  artificial  pancreas  (AP)  is finding  the  optimal  insulin  rates  that  can  effectively
reduce  high  blood  glucose  (BG)  levels  in  type  1 diabetic  patients.  To  achieve  this,  most  autonomous
closed-loop  strategies  continuously  compute  the  optimal  insulin  bolus  to be administrated  on  the basis
of  the estimated  plasma  concentrations  for glucose  and  insulin.  Unlike  subcutaneous  glucose  levels  which
can be  measured  in real-time,  unavailability  of  insulin  sensors  makes  it essential  the use  of mathematical
models  so  as  to  fully  estimate  plasma  insulin  concentrations.  For  model-based  estimation,  GP-Bayesian
filters  have  been  recently  proposed  to  incorporate  probabilistic  non-parametric  Gaussian  process  (GP)
models  of  dynamic  systems  into  Kalman  filtering  techniques.  As a result,  model  uncertainty  can  explicitly
be  incorporated  into  the prediction  step  and  in  the  filtering  processes,  which  is  usually  not  the case  for
more  traditional  filtering  strategies  that  resort to parametric  models  for  state  estimation.  More  specif-
ically,  the  question  arises  as  to  whether  glycemic  variability  is properly  taken  into  account  in  model
formulations  and  whether  it would  compromise  proper  estimation  of  plasma  insulin  concentration.  To
tackle this,  a stochastic  glycemic  model  including  variability  was incorporated  into  different  parametric
and  nonparametric  filtering  techniques  to provide  an estimate  of  the  plasma  insulin  levels.  In particular,
we  compared  density  representation  against  using  knowledge  about  the  parameterization  of  the tran-
sition  dynamics  and  the  observation  function.  We  found  that,  as glycemic  variability  increases,  filtering
techniques  based  on  parametric  models  rapidly  degrades  their  performance  as  a consequence  of  large
nonlinearities.  Results  show that  Bayes’  filtering  techniques  increase  predictability  of  the  patient  state,
and  thus,  boost  safety  and  performance  in the  AP control  and  monitoring  tasks.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

With existing sensing and pump technologies, widespread
acceptance and use of an AP is steadily increasing and hopefully it
will soon take part of routine clinical care [1]. The key control goal
of an AP is the real-time calculation of the optimal insulin rates
to be infused in type 1 diabetic patients so as to mimic  the body’s
natural regulatory mechanism, i.e. BG levels between 70 and 140
[mg/dl]. To this aim, a number of control and monitoring strategies
[2–6] has been proposed to compute optimal exogenous insulin
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infusion profiles on the basis of plasma glucose and plasma insulin
estimation. For BG determination this is achieved by a continu-
ous glucose monitor (CGM) that senses the glucose concentration
in the interstitial area, and later on by considering the dynamics
between this determination and the actual plasmatic concentration
[7]. However, unlike plasma glucose which can be measured in real-
time, the lack of specific sensors to determine plasma insulin levels
makes the use of mathematical or inductive models for inferring
insulin concentration the alternative of choice.

For obtaining plasma insulin estimations, a minimal paramet-
ric glucose-insulin dynamic model can be used in an open-loop
configuration [8]. The main limitation of this state estimation strat-
egy is that available CGM data are not taken into account to adapt
the parameters of the model employed, despite these adjustments
are mandatory in a dynamic system exhibiting significant levels
of variability and complex regulatory behavior. To improve state
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estimation of a diabetic patient, plasma insulin concentration has
recently been estimated from BG data using Bayesian filtering
techniques which allow improving the estimation of glycemic con-
ditions in real-time [9,10]. Filtering techniques are based on the
proper combination of a dynamic model of the system and a state
observer and have enjoyed remarkable success in the estimation of
hidden states for different types of biomedical systems [11,12].

A number of Bayesian filtering techniques for nonlinear dynamic
systems have been proposed and extensively studied [13,14]. The
key issue in a Bayesian filter operation is the propagation of a Gaus-
sian density function through the system dynamics. In the Extended
Kalman Filter (EKF) the state distribution is represented by a Gaus-
sian, which is then fully propagated through the first-order Taylor
series expansion, that is, linearization of a nonlinear system dynam-
ics [15]. In turn, the Unscented Kalman Filter (UKF) addresses state
estimation by using a deterministic sampling approach, where
the probability distribution of states is represented using a set of
sample points. Noteworthy, the foregoing Kalman filters for state
estimation are based on known parametric models of the state tran-
sition and measurement functions. However, for most nonlinear
systems accurate parametric models are never readily available to
describe all the (hidden) aspects of their dynamics. A feasible solu-
tion when facing nonlinear dynamics is the use of an approximated
model in a nonparametric approach based on Gaussian processes
(GP) models [16]. The so-called GP-Bayesian filters incorporate
probabilistic non-parametric GPs models for states into the design
EKF and UKF techniques[17]. In this manner, model uncertainty can
explicitly be incorporated into the state prediction and the filtering
steps.

Poor predictability of the glucose-insulin dynamics in a diabetic
patient is a key issue that any control and monitoring strategy,
to be implemented in an AP, should be able to address. There-
fore, it is of significance and concern whether excessive variability
might affect the estimation of plasma insulin concentration and, in
consequence, compromise safety and performance of an AP opera-
tion. In this work, a stochastic version of the well-known Hovorka
glucose-insulin model [18] was incorporated into parametric and
nonparametric Bayesian filtering techniques to provide a real-time
estimate of the plasma insulin concentration. Better understand-
ing the effect of BG variability on the error between a given model,
describing glucose-insulin interactions, and the real and complex
physiologic system is of great significance for accelerating the
acceptance of an AP.

This article is structured as follows. Section 2 introduces a
stochastic model for describing the glucose-insulin dynamics in
diabetic patients. Section 3 provides an overview of Bayesian filter-
ing and GP regression models used to capture the underlying latent
function for state transitions. In Section 4 different Bayesian filter-
ing techniques are presented. In particular, we evaluate whether
the filter propagates the full densities on the system dynamics
(EKF and GP-ADF) or resorts to a sampling approach (UKF and GP-
UKF). Also, it is analyzed whether the filter has full knowledge of
the parameterization of the transition and measurement functions
(EKF and UKF) or it uses a Gaussian approximation (GP-UKF and
GP-ADF). In Section 5, results obtained for plasma insulin estima-
tion in a simulation environment are shown and discussed. Finally,
in Section 6 some remarks and future research efforts are outlined.

2. Stochastic model of the glucose-insulin dynamics

In this section, the reference deterministic model of the glucose-
insulin dynamics based on the work of Hovorka et al. [18] is
first presented. Later on, a stochastic diffusion process to model
glycemic variability in synthetic diabetic patients is discussed.
The Hovorka glucose-insulin model is a nonlinear compartmental

Table 1
Set of model parameters.

Parameter Value Unit

k12 0.066 [min−1]
VG 0.16*BW [l]
EGP 0.0161 [mmol/min]
F0 0.8507 [mmol/min]
FR 0.003(G(t) − 9)VG [mmol/min]
�lag 5 [min]
�(k) 2 %

numerical model with two  inputs, insulin and glucose intake, and
one output, glycemia. Particularly, the insulin-glucose interaction
is nonlinear and it is given as

dQ1(t)
dx

= −
[

F0

VGG(t)
+ x1(t)

]
Q1(t) + k12Q2(t) − FR + UG(t) + EGP [1 − x3(t)]

dQ2(t)
dx

= x1(t)Q1(t) − [k12 + x2(t)] Q2(t)

(1)

where Q1(t), Q2(t) represent the amounts of glucose in the acces-
sible and non-accessible compartments, respectively, whereas k12
is the transfer rate constant and EGP is the parameter for endoge-
nous glucose production; F0 is a parameter that represents the total
non-insulin dependent glucose flux and FR represents renal glucose
clearance above the glucose concentration threshold of 9 [mmol/l].
In turn, UG (t) is carbohydrate absorption rate, x1(t) is the remote
effect of insulin on the rate of glucose transport, while x2(t) and x3(t)
account for the elimination and endogenous glucose production,
respectively. For space consideration, the remaining subsystems
are not given, but they are fully described in [18]. BG measurements
are then given as

G(t) = Q1(t)
VG

(2)

where VG is glucose distribution volume. Table 1 shows the param-
eters used in the glucose-insulin interaction model of a type 1
diabetic patient, as given in [18]. The current patient state can
be summarized in the vector x(t) in Eq. (3), where the entries are
different state variables.

x(t) = [S1(t), S2(t), I(t), x1(t), x2(t), x3(t), Q1(t), Q2(t), G(t)] (3)

As CGM determines BG levels in the interstitial fluid and the
glucose exchange across the capillary walls occurs, by a simple but
not instantaneous diffusion across a concentration gradient with a
time-lag �lag , we  have that the interstitial concentration is given as

dIG(t)
dx

= 1
�lag

(G(t) − IG(t)) (4)

Finally, the obtained glucose profile is multiplied by a random
time-varying calibration error �(k) and later corrupted by an addi-
tive noise sequence sampled from a zero mean white Gaussian
noise process v(k), that is:

CGM(t) =
(

1 + �(t)
)
IG(t) + v(t) (5)

For the development of efficient control and monitoring strate-
gies of an AP, the deterministic glucose-insulin model might be
enhanced by taking into account the variable behavior of patient
metabolism [19–21]. An effective, yet simple alternative way to
describe such fluctuating behavior is modeling temporal variability
through a stochastic diffusion process. Ito [22] provided an alterna-
tive to ordinary numerical rules of calculus by defining a particular
kind of uncertainty representation based on the Wiener diffusion
process. Accordingly, the system transition function is described as
a controlled Ito’s diffusion process of the form

ẋ(t) = a (x(t), u(t)) + �dω (6)
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