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a  b  s  t  r  a  c  t

We  present  a novel  method  for automatic  sleep  scoring  based  on  single-channel  EEG. We  introduce  the
use of  a deep  convolutional  neural  network  (CNN)  on  raw  EEG  samples  for supervised  learning  of  5-
class sleep  stage  prediction.  The  network  has  14  layers,  takes  as  input  the  30-s  epoch  to be  classified
as well  as  two  preceding  epochs  and  one  following  epoch  for temporal  context,  and  requires  no  signal
preprocessing  or feature  extraction  phase.  We  train  and  evaluate  our  system  using data  from  the  Sleep
Heart  Health  Study  (SHHS),  a  large  multi-center  cohort  study  including  expert-rated  polysomnographic
records.  Performance  metrics  reach the  state  of  the  art,  with  accuracy  of  0.87  and  Cohen  kappa  of  0.81.
The  use  of a large  cohort  with  multiple  expert  raters  guarantees  good  generalization.  Finally,  we present
a  method  for  visualizing  class-wise  patterns  learned  by the  network.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Sleep is an essential ingredient for good human health. A
number of sleep disorders exist, among which insomnias, hyper-
somnias, sleep-related breathing disorders, circadian rhythm
sleep-wake disorders, parasomnias, sleep movement disorders.
Polysomnography (PSG) is the main tool for diagnosing, following,
or ruling out sleep disorders. A polysomnogram is a collection of
various signals useful for monitoring the sleep of an individual. It
uses physiological signals (EEG, EMG) and environmental signals
(microphone, accelerometer). Sleep staging consists of dividing a
polysomnographic record into short successive epochs of 20 or 30 s,
and classifying each of these epochs into one sleep stage amongst
a number of candidate ones, according to standardized classifica-
tion rules [1,2]. Sleep staging can be carried out either on a whole
polysomnogram or on a subset of its channels, and either by a
trained expert or by an algorithm. In some cases the expert can
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use an algorithm for pre-scoring. The successive representation of
sleep stages over the night is called a hypnogram. It provides a
simple representation of the sleep which is useful for suspecting or
diagnosing sleep disorders. Sleep staging is a tedious task which
requires considerable work by human experts. Also, the quality
of the rating depends on the experience and fatigue of the rater
and inter-rater agreement is often less than 90% [3,4]. Hence the
demand for automated sleep staging algorithms.

In this article, we consider single-channel EEG sleep staging.
Whilst it constitutes a first step towards multichannel analysis
systems, single-channel sleep staging is also interesting in itself
because it allows light, wearable, and unobstrusive systems that
can be deployed easily on mobile devices. The lightweight setup
with only two or three electrodes and fewer wires also helps ensur-
ing that sleep is not compromised by any incomfort. Most studies
on single-channel EEG-based automatic sleep stage scoring adopt a
two-step methodology. First, different features are extracted from
the time waveforms. Second, a classifier is trained to predict sleep
stages based on these extracted features. Most features belong to
one of the following three categories [5]: (a) time-domain fea-
tures, (b) frequency-domain features, and (c) non-linear features.
For classification, the most common methods include decision trees
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Table 1
A per-class summary of the dataset.

Wake N1 N2 N3 REM Total

Total epochs 1,514,280 201,431 2,169,452 719,690 779,548 5,384,401
Total  equivalent days of data 525 70 753 250 271 1871

and random forests [6], support vector machines [7], and neu-
ral networks [8]. The authors of [9] use multiscale entropy and
autoregressive features along with linear discriminant analysis. The
authors of [10] use features from a difference visibility graph and
classify using a support vector machine. In [6], time-frequency fea-
tures, Renyi’s entropy features and a random forest classifier are
used. The authors of [11] obtain features from an Empirical Mode
Decomposition and classify with bootstrap aggregating with deci-
sion trees. In [12], spectral features from a tunable Q-factor wavelet
transform and a random forest classifier are used. [13] use iterative
filtering, a discrete energy separation algorithm and various clas-
sifiers. Finally, the authors of [14] use a recurrent neural classifier
on energy features.

Recently, some studies adopt the use of neural networks classi-
fiers trained end-to-end and which serve both as feature extractors
and classifiers. [8] study the use of stacked sparse autoencoders and
[15] the use of convolutional neural networks. The authors of [16]
use a convolutional neural network preprocessor complemented
with a bi-directional long short-term memory network (LSTM).
Literature results for some of these methods can be found in Table 4.

In this article, we introduce a method for single-channel EEG-
based sleep staging using a deep supervised convolutional neural
network(CNN) on raw signal samples. CNNs have been used in other
domains on raw continuous signal with great results, starting with
image recognition [17,18], followed by many other domains such as
natural language processing [19], recommender systems [20], and
other supervised pattern recognition tasks. Since recently, CNNs
have also been used on short EEG time series for various applica-
tions such as Brain Computer Interfaces [21,22] including motor
imagery [23] and Steady State Visually Evoked Potentials (SSVEP)
[24], as well as seizure detection [25], driver’s cognitive perfor-
mance [26], and eye tracking [27]. Since recently, CNNs are also
used for sleep scoring [15,16]. The goal of our work is to show that
CNNs are suitable and offer competitive sleep scoring performance
on a large multi-center sleep scoring dataset. Such systems may
then be applied in various conditions such as critically ill patients
where continuous EEG recording after brain injury is showing a
growing interest. The advantage of using an end-to-end approach
is that no feature engineering phase is required. The network,
described in Section 2, is trained to learn feature detectors that are
suited to the classification task at hand and are likely to perform
better than hand-engineered features. As discussed in Sections 3
and 4, the method has state-of-the-art performance when applied
on a large sleep scoring dataset.

2. Materials and methods

2.1. Dataset

The Sleep Heart Health Study (SHHS) [28] is a multi-center
cohort study, initiated by the American National Heart Lung and
Blood institute to determine whether sleep-disordered breathing is
associated with a higher risk of various cardiovascular diseases. The
study includes two rounds of polysomnographic recordings. We  use
only the first round (SHHS-1) because it includes almost all patients
and because all records have the same sampling rate (125 Hz), con-
trary to the second round where records can be sampled at 125 or
128 Hz. Dataset SHHS-1 contains 5793 polysomnographic records.
Recorded channels include two bipolar EEG channels (C4-A1 and

Fig. 1. Composition of a 1D convolution layer, including convolution and subsam-
pling. The nonlinearity is not represented.

C3-A2), two EOG channels, one EMG  channel, one ECG channel,
two inductance plethysmography channels (thoracic and abdom-
inal), a position sensor, a light sensor, a pulse oxymeter, and an
airflow sensor. Each record was  manually scored for sleep stages
by a single technician on 30-s epochs according to Rechtschaffen
and Kales scoring rules [1], resulting in several sleep stages: Wake,
N1, N2, N3, N4 (non-REM), and REM. The total number of techni-
cians involved is not reported. More details about montages and
scoring modalities are provided in [29].

2.2. Preprocessing

In such polysomnographic records, for most subjects a long
‘wake’ period before the patient goes to sleep and another after he
or she wakes up is observed. These wake periods are trimmed so
that the number of pre-and-post-sleep wake epochs is not larger
than the most represented other class. Since available EEG chan-
nels are symmetrical, they yield comparable performance. In the
following we use C4-A1. As suggested in recent recommendations
[2], stages N3 and N4 are merged into a single stage N3. The very few
patients containing no epoch for a given sleep stage are excluded
because they might be outliers. The resulting number of epochs
(resp. relative importance) per stage and total number of epochs are
shown in Table 1. As in any PSG study, classes are very unbalanced.
Stage N1 is particularly under-represented. No preprocessing is
done on the EEG signals themselves.

2.3. CNN classifier

2.3.1. Architecture
A complete CNN is usually composed of a number of convolu-

tional layers, followed by one or two fully-connected layers, and a
softmax regression layer that outputs class probabilities. The struc-
ture of a convolutional layer for one dimensional signals is shown
in Fig. 1. Each layer l convolves the set X(l−1) of its input feature
maps with a set of learnable kernels (also called filters) W(l) and
adds biases b(l). With n(l−1) the number of input feature maps and
n(l) the number of output feature maps, and k(l) the width of the
kernel, W(l) has shape (k(l), n(l−1), n(l)). Since inputs have one chan-
nel only, n(0) equals 1. Let x(l)

j
denote the jth feature map  in X(l), and

w(l)
ij

the slice of W(l) that applies from input feature map i to output
feature map  j. With such notation, we have:
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