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a b s t r a c t

This work is concerned with optimal harvesting problems in random environments. In contrast to the
existing literature, the Markov chain is hidden and can only be observed in a Gaussian white noise in our
work. We first use the Wonham filter to estimate the Markov chain from the observable evolution of the
given process so as to convert the original problem to a completely observable one. Then we treat the
resulting optimal control problem. Because the problem is virtually impossible to solve in closed form,
our main effort is devoted to developing numerical approximation algorithms. To approximate the value
function and optimal strategies, Markov chain approximation methods are used to construct a discrete-
time controlled Markov chain. Convergence of the algorithm is proved by weak convergence method and
suitable scaling. A numerical example is provided to demonstrate the results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This work focuses on optimal harvesting problems for ecosys-
tems formulated by stochastic differential equations with regime
switching represented by a continuous-time Markov chain. The
problem belongs to the class of singular stochastic control prob-
lems motivated by the establishment of ecologically, environ-
mentally, and economically reasonable wildlife management and
harvesting policies. Recently, there has been a resurgent interest
in determining the optimal harvesting strategies in the presence
of stochastic fluctuations. Radner and Shepp (1996) derived the
optimal strategy of a model for corporate strategy. Alvarez and
Shepp (1998) studied the optimal harvesting plan for the stochas-
tic Verhulst–Pearl logistic model. All the aforementioned works
dealt with species living in an environment with a fixed config-
uration. Recently, Song, Stockbridge, and Zhu (2011) and Tran and
Yin (2015) considered singular control problems in random envi-
ronments modeled by a Markov chain, in which Song et al. (2011)
dealtwith a single species and Tran andYin (2015) treatedmultiple
species with interactions.

Suppose that there is a single species X(t) whose growth is
subject to the usual fluctuations as well as the abrupt changes
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of a random environment. Harvesting strategies are introduced
to derive financial benefit as well as to control the growth
of the population. Let Z(t) denote the total amount harvested
from the species up to time t . The goal is to find a harvesting
strategy Z(t) thatmaximizes the expected total discounted income
from harvesting, up to the time when the population falls to
a given threshold (e.g., extinction), which has the following
economic interpretation. Let X(t) be the value at time t of
asset/security/investment and Z(t) represent the total amount
paid in dividends up to time t . Then R+ = (0,∞) can be regarded
as the solvency set, and (13) becomes the problem of finding the
optimal stream of dividends from the collection of assets until the
time of bankruptcy; see Asmussen and Taksar (1997), Sotomayor
and Cadenillas (2011), and Choulli, Taksar, and Zhou (2003).

Harvestingmay occur instantaneously, so it results in a singular
stochastic control problem in the sense that the optimal harvesting
strategy Z(t) may not be absolutely continuous with respect to
the Lebesgue measure of the time variable. For instance, if the
discounted value and noise intensity are sufficiently large, driving
the population to extinction instantly or chattering harvesting
strategies might be optimal or near-optimal; see Alvarez and
Shepp (1998), and Tran and Yin (2015). In contrast to regular
stochastic control problems, in which the displacement of the
state due to control is differentiable in time, the harvesting
problem considered in this work allows the displacement to be
discontinuous. To find the value function and the harvesting
strategy, one usually solves a so-called Hamilton–Jacobi–Bellman
(HJB) equation. However, for singular control problems with
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regime switching, the HJB equation is in fact a coupled system of
nonlinear quasi-variational inequalities. A closed-form solution is
virtually impossible to obtain. The Markov chain approximation
methodology developed by Kushner and Dupuis (1992) becomes
a viable alternative. As pointed out in Kushner and Dupuis (1992),
probabilistic approach using the Markov chain approximation
method for controlled diffusions has the following advantages.
First, the Markov chain approximation method allows one to use
physical insights derived from the dynamics of the controlled
diffusion in obtaining a suitable approximation scheme. Second,
the Markov chain approximation method does not require much
regularity of the controlled processes (solutions of the controlled
stochastic differential equations) nor does it rely on the properties
of the associated HJB equations. Though it is well recognized
the need of developing numerical approximation methods for
singular control problems, the results are still scare. For singular
controlled diffusions without regime switching, Budhiraja and
Ross (2007), and Kushner and Martins (1991) are two of the
representative works that carry out a convergence analysis
using weak convergence and relaxed control formulation for
singular control problems in the setting of Itô diffusions. Recently,
some works have been devoted to numerical methods for
singular controls with regime switching. Jin, Yin, and Zhu (2012)
developed numerical algorithms for finding optimal dividend pay-
out and reinsurance policies under a generalized singular control
formulation. A numerical algorithm for optimal dividend payment
and investment strategies of regime-switching jump diffusion
models with capital injections was then introduced in Jin, Yang,
and Yin (2013).

In our work, we focus on the harvesting problem for a partially
observed system with a hidden Markov chain. So far, the work
on numerical solutions has mostly concentrated on the case the
Markov chain is observable. In reality, the environment (Markov
chain) can often be only observed with noise. That is, at any
given instance, the exact state of residency of the Markov chain
is not known. Thus, we cannot see α(t) directly but only have
noise-corrupted observation in the form of α(t) plus noise. An
effectiveway to handle control problems of such partially observed
systems is to convert them to completely observed ones, which
can be done by using aWonham filter (see, for example, Wonham,
1964). In the literature, the Wonham filters have been used
widely to investigate control problems with partial observations;
see Tran and Yin (2014) and Yang, Yin, and Zhang (2015) for
applications in engineering, finance, and ecology. Note that our
work is different from some problems in math finance, in which
the X(t) is taken to be the observation. Here we have another
observation process in the form of the Markov chain observed
in white noise. Such formulations appear in many networked
control problems, ecological systems, and cyber–physical systems.
Compared to the aforementioned works on numerical methods
for singular control problems, in the current work, we take a step
towards more useful and realistic model where the Markov chain
is unobservable. Although main ideas developed are crucial to the
analysis of the current paper, there are key differences in themodel
that make our analysis more delicate. Using a Wonham filter,
we convert the partially observed system into a fully observed
controlled diffusion.We then design approximation procedures for
the optimal strategies and the value function. We need to use a
couple of step sizes h = (h1, h2). The parameter h1 > 0 is a
discretization parameter for state variables, and h2 > 0 is the step
size for time variable. In the actual computing, the computations
are involved due to the presence of the Wonham filter.

In contrast to the existing results, our new contributions in
this paper are as follows. (i) We use Wonham’s filter to formulate
the harvesting problem in random environments when the
Markov chain is only observable in white Gaussian noise. (ii) We

convert the partially observed system to a fully observed system
by replacing the unknown Markovian states by their posterior
probability estimates. (iii) We develop numerical approximation
schemes based on the Markov chain approximation method.
AlthoughMarkov chain approximation techniques have been used
extensively in various control problems, the work on combination
of such method for a singular control problem with partial
observation seems to be scarce to the best of our knowledge.

The rest of the paper is organized as follows. Section 2 begins
with the problem formulation. Section 3 presents the numerical
algorithm based on the Markov chain approximation method.
Section 4 establishes the convergence of the algorithm. Finally,
the paper is concluded with a numerical example for illustration
together with further remarks in the last section.

2. Formulation

For i = 1, . . . , r , let X i(t) be the population size of the
ith species in the ecosystem at time t and denote X(t) =
X1(t), . . . , X r(t)

′
∈ Rr (with z ′ denoting the transpose of z ∈

Rr1×r2 with r1, r2 ≥ 1). Suppose that species X i(t) live in random
environments. In addition to the random fluctuations of the pop-
ulation, we also assume that the growth of the species is subject
to abrupt changes within a finite number of configurations of the
environment. For simplicity, we assume that the switching among
different environments is memoryless and that the waiting time
for the next switch is exponentially distributed. In fact, this phe-
nomenon is frequently observed in nature; see Slatkin (1978) and
Yin and Zhu (2010). Thus we can model the random environments
and other random factors in the ecological systemby a continuous-
time Markov chain α(t) taking values in M = {1, 2, . . . ,m} with
the generator given by Q = (qij) ∈ Rm×m. Assume throughout the
paper that both theMarkov chainα(t) and the r-dimensional stan-
dard Wiener process w(·) =


w1(·), . . . , wr(·)

′
are defined on a

complete filtered probability space (Ω,F ,F (t), P), where {F (t)}
is a filtration satisfying the usual condition (i.e., right continuous,
increasing, and F (0) containing all the null sets).

In an effort to capture the salient feature that continuous
dynamics and discrete events coexist in the ecosystem, we model
the evolution in the absence of harvesting by the stochastic
differential equation

dX(t) = b(X(t), α(t))dt + σ(X(t), α(t))dw(t),
X(0) = x0 ∈ Rr

+
, α(0) = α0 ∈ M,

(1)

where b(·) : Rr
× M → Rr , σ(·) : Rr

× M → Rr×r are suitable
functions. Furthermore, we assume that the Brownianmotionw(·)
and the Markov chain α(·) are independent, a commonly used
assumption in the literature. We attempt to answer the question:
Can we solve optimal harvesting problems if the Markov chain
is hidden and we can only treat a partially observed system?
In particular, we cannot see α(t) directly but only have noise-
corrupted observation in the form of α(t) plus noise. That is, we
can observe the following process

dy(t) = g(α(t))dt + σ0dB(t), y(0) = 0, (2)

where σ0 is a positive constant, g : M → R is a one-to-one
function, B(t) is a one-dimensional standard Brownian motion
being independent ofw(t).

To proceed, we denote by 1E the indicator function of the event
E, and use the following notation. For j = 1, . . . ,m,

pj(t) := 1{α(t)=j},

ϕj(t) := P (α(t) = j|y(s), 0 ≤ s ≤ t) .
(3)

Sinceϕj(t) is the probability vector conditioned on the observation
σ {y(s), 0 ≤ s ≤ t}, ϕj(t) ≥ 0 and

m
j=1 ϕ

j(t) = 1.
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