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In this paper, we revisit the full lattice representation of continuous piecewise affine (PWA) functions
and give a formal proof of its representation ability. Based on this, we derive the irredundant lattice PWA
representations through removal of redundant terms and literals. Necessary and sufficient conditions
for irredundancy are proposed. Besides, we explain how to remove terms and literals in order to ensure
irredundancy. An algorithm is given to obtain an irredundant lattice PWA representation. In the worked
examples, the irredundant lattice PWA representations are used to express the optimal solution of explicit
model predictive control problems, and the results turn out to be much more compact than those given
by a state-of-the-art algorithm.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A continuous piecewise affine (PWA) function is a nonlinear
function with affine components defined on polyhedral subre-
gions. It is demonstrated in Wilkinson (1963) that any continuous
PWA function can be expressed by a min-max or max-min com-
position of its affine components,

f=_min {max{¢;}}, (1)
i=1,..., Ny jel;

or

f= max {min{g}}, 2)
i=1,....,Np jel;
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in which ¢; is an affine function, Ny and N, are integers, and I; and

I; are index sets. In Tarela and Martinez (1999), formal proofs are
given demonstrating that any continuous PWA function can be de-
scribed by (1) and (2), which are then called lattice PWA repre-
sentations. They also appeared in De Schutter and van den Boom
(2004) and Gunawardena (1994). We call (1) the conjunctive form
and (2) disjunctive form. In Bartels, Kuntz, and Scholtes (1995),
Ovchinnikov (2002) and Ovchinnikov (2010), the representation
ability of (1) and (2) is also proved.

Among all these papers Bartels et al. (1995), De Schutter and
van den Boom (2004), Gunawardena (1994), Ovchinnikov (2002),
Ovchinnikov (2010), Tarela and Martinez (1999) and Wilkinson
(1963), only Tarela and Martinez (1999) and Wilkinson (1963) give
methods for determining the parameters Ny, I; in (1) and N>, [; in
(2). However, Wilkinson (1963) only illustrates how to determine
the parameters for a 1-dimensional example and does not provide
a formal proof. Moreover, it is demonstrated in Ovchinnikov (2010)
that an important assumption is not stated in the proofs in Tarela
and Martinez (1999), while without that assumption the conclu-
sions do not hold. In this paper, we mainly focus on the disjunc-
tive lattice PWA representation (2), and give a proof concerning the
representation ability as well as the determination of the parame-
ters. The results can be easily extended to the conjunctive case due
to duality.

There are also other methods for representing PWA functions
(Breiman, 1993; Julidn, Desages, & Agamennoni, 1999; Wang,
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Huang, & Junaid, 2008; Wang & Sun, 2005; Xu, Huang, & Wang,
2009). The methods of Breiman (1993) can only represent contin-
uous PWA functions in 1 dimension. The representations of Julian
et al. (1999) and Xu et al. (2009) can only represent continuous
PWA functions of which the domain is partitioned into simplices
or the union of simplices. Although the representations proposed
in Wang et al. (2008) and Wang and Sun (2005) can represent
any continuous PWA function, the parameters in the expression of
Wang and Sun (2005) are hard to derive and the number of param-
eters in the expression of Wang et al. (2008) is large. Conversely,
we will show in Section 2 that the integer N, and the index set i,- in
(2) are not hard to derive.

Lattice PWA representations have been used to express the
solution of explicit model predictive control (MPC) problems in
Wen, Ma, and Ydstie (2009). In MPC, the control action is obtained
by solving a finite-horizon open-loop optimal control problem at
each sampling instant. At the next time step, a new optimal control
problem based on new measurements of the state is solved over a
shifted horizon. The optimization relies on a prediction model for
predicting future outputs of the system, can take into account input
and output constraints, and minimizes a performance criterion
(Bemporad, Borrelli, & Morari, 2002). When the constraints are
affine, a continuous PWA control law arises if the performance
criterion in the optimization problem of MPC is convex quadratic
or polyhedral. Then, the optimal solution can be computed offline,
and the cost of online optimization can be reduced to that of online
evaluation of a continuous PWA function. This is exactly what
“explicit” means.

The corresponding continuous PWA optimal solution can be
computed using multi-parametric linear or quadratic program-
ming through e.g. the MPT Toolbox (Herceg, Kvasnica, Jones, &
Morari, 2013) and stored as a collection of local affine functions
and subregions. For online evaluation, many papers are dedicated
to solving a point location problem, i.e., determining the subregion
the present state is located in, and then finding the correspond-
ing local affine function (Christophersen, Kvasnica, Jones, & Morari,
2007; Herceg, Mariéthoz, & Morari, 2013; Tgndel, Johansen, & Be-
mporad, 2003b). The online search complexity is logarithmic in the
number of subregions (Herceg, Mariéthoz et al., 2013; Tendel et al.,
2003b) or linear in the number of subregions (Christophersen et al.,
2007). For this kind of methods, the online search can be acceler-
ated through storing additional information apart from the poly-
hedral partition, such as search tree and adjacency information.

On the other hand, some papers reduce the offline storage
complexity by avoiding the storage of the polyhedral informa-
tion (Baotic, Borrelli, Bemporad, & Morari, 2008; Jones, Grieder, &
Rakovi¢, 2006). For the case of linear cost function, both methods
store only the optimal value function; the online evaluation com-
plexity for Baotic et al. (2008) is linear in the number of subregions
while for the method of Jones et al. (2006) it is logarithmic. How-
ever, for the quadratic cost case, the method in Jones et al. (2006) is
not applicable and the procedure of Baotic et al. (2008) has to store
the information of the descriptor function as well as the ordering
of local affine functions in neighboring polyhedra. Hence, it is of
great value to find a method to reduce offline storage complexity
for both the linear and the quadratic case.

For a continuous PWA controller derived in the linear or the
quadratic case, through determining the parameters of (1), the
lattice PWA function is used to represent the controller in Wen
et al. (2009). For online evaluation, the current state is then
directly substituted into expression (1) and the optimal solution
results. By removing redundant parameters in the lattice PWA
representations, both the storage requirements and the online
complexity can be reduced. However, the simplification lemmas
in Wen et al. (2009) have limitations and the result cannot

guaranteed to be irredundant. Hence, in the current paper, we aim
to give irredundant lattice PWA representations.

The paper is organized as follows. The next section introduces
the full lattice PWA representation, and gives a proof of its repre-
sentation ability. The irredundant lattice PWA representations are
derived in Section 3, including necessary and sufficient conditions
for irredundancy and the algorithm for obtaining an irredundant
lattice PWA representation. The offline preprocessing and online
evaluation complexity of the irredundant lattice PWA represen-
tations are also analyzed. In Section 4, two worked examples are
given, in which the irredundant lattice PWA representations are
applied to express the solutions of explicit MPC problems. Finally,
the paper ends with conclusions in Section 5.

2. Full lattice PWA representation

Definition 1 (Chua & Deng, 1988). A function f : D — R, where
D C R"is convex, is said to be continuous PWA if it is continuous
on the domain D and the following conditions are satisfied:

(1) The domain space D can be divided into a finite number of
nonempty convex polyhedra, i.e, D = UiN:1 i, 2 # 0,
the polyhedra are closed and have non-overlapping interiors,
int(£2) Nint(2) = ¥, Vi,j € {1,..., N}, i # j. These
polyhedra are also called subregions. The boundaries of the
polyhedra are (n — 1)-dimensional hyperplanes.

(2) In each subregion £2;, f equals a local affine function £joc),

F @) = biociy(¥), VX € £2.

It is important to note that in Definition 1 some local affine
function may appear in different subregions, i.e., liociy) = - =

Ciocqiy) for different iy, ..., i € {1,...,N}. We collect all the lo-
cal affine functions and select those distinct ones, labeling them as
£1,...,€y.Soloc(i) € {1,..., M} and no two affine functions ¢;
and ¢; withi,j € {1,..., M}, i # j, are identical. Therefore, there
can be more subregions than distinct affine functions.

We further partition each subregion £2; (i = 1,..., N) into
so called base regions D;; with t = 1, ..., m;, to make sure that
no other affine function intersects with £, at some point in the
interior of D, i.e.,

{(x1€;(x) = Lioci)) (%), j 7 loc(D)} N int(Dy) = @. (3)

The following lemma defines the partition.

Lemmal. Forany i € {1,..., IQ}, there is a partition of the
subregion §2;
2 =U Dy (4)

such that the following holds,

(1) The set int(ID; ;) is nonempty.

(2) For each Dj ¢, we have
Iz,i,tUIg,i,t = {1,-~-,M}a (5)
in Wthh Iz,z’.t = {]lE](X) > K10c<,-)(x), Vx S Di,t} and IS,i,t =
{1€;(X%) < Liociy (%), Vx € Dy}

(3) Foralli,j e {1,...,N},t e {1,...,m},f € {1,....m}, t #
t or i # j, the following holds,

int(D;¢) N int(D;;) = ¥. (6)

The proof of Lemma 1 as well as the time complexity of the
partition process is given in Appendix A.
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