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a  b  s  t  r  a  c  t

The  quantification  of positron  emission  tomography  (PET)  images  requires  a  time  activity  curve  (TAC)
to  provide  an  accurate  estimation  of  kinetic  parameters.  However,  the  low  signals  to  noise  ratio  (SNR),
the important  level  of noise,  and  the  low  spatial  resolution  of  PET  image  make  the extraction  of the  TAC
a  challenging  task.  In  this  study,  we present  a new  method  based  on multi-scale  and  non-local  means
method  (MNLM)  to  reduce  noise  in dynamic  PET  sequences  of small  animal  heart.  MNLM  filter  takes
into  account  the  temporal  correlation  between  images  in  the  dynamic  measurement  and  benefits  from
the  complementary  properties  of both  the  Shearlet  transform  and  the  wavelet  transform  to provide
best  reduction.  The  method  was  tested  on dynamic  digital  mouse  phantom  and  a  preclinical  rat  study
(n =  6).  Based  on a comparative  study  with  three  major  algorithms  reviewed  on  the  state  of the art,  the
data analysis  proved  the significance  of the  MNLM  filter.  In  simulated  data,  the  major  finding  of the
study  showed  that at the highest  noise  level  (7.68%),  the model  gave  the  best  result  (Chi-square  = 4.06).
Furthermore,  it presented  a  notable  gain  in  terms  of  PSNR  and  SSIM  plot.  In  real  data,  the  MNLM  showed
a  better  result  in  the  computation  of  the  contrast  metric  with  a value  of  27.04  ∓  12.1  and  the  highest  SNR
with  a value  of 74.38  ∓  9.2.  This  approach  proved  a  better  potential  and  could  be  considered  as  a  valuable
candidate  to reduce  noise  in clinical  system.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Positron emission tomography (PET) is a powerful functional
imaging modality which enables in vivo examination of organs’
functions. PET allows the quantification of the cerebral blood
flow, receptor binding, and bimolecular metabolism in the body.
Recently, stand-alone or combined to anatomical modality use of
PET has emerged as an extremely interesting technique for study-
ing some patho-physiologic phenomena. The quantification of PET
images helps the understanding of some specific physiological
and biochemical processes like the global and local myocardium
metabolic rate for glucose (MMRGlu). Cardiac PET image with [18F]-
fluorodeoxyglucose ([18F]-FDG) is commonly performed to assess
MMRGlu in the heart cells [1,2]. Mathematical modeling tech-
niques, such as graphical or compartmental analyses, are generally
applied to derive parameters of interest. Importantly, the quan-
tification of PET images uses both the plasma time activity curves
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(TACs) and the target tissue TAC, as input functions of a mathe-
matical model [3,4]. The tissue TAC is commonly obtained from the
time course of the voxel or the mean over a region of interest (ROI)
radioactivity in the image and the plasma TAC is obtained either
from the blood sampling or from the image [5]. The blood sam-
pling is a long, inaccurate and risky procedure in clinical studies.
Therefore, different techniques like image derived input functions
(IDIF) [2] and population-based input functions (PBIF) [6] were
investigated to substitute the arterial blood sampling. Although,
in many cases, these methods have succeeded, they are still con-
sidered as unreliable techniques because of the need to a few blood
samples or the dependence on the image quality. Nevertheless,
the estimation of the input function (IF) is a critical element and
by consequence the quantification of PET images is still a difficult
task given their low signals to noise ratio (SNR). Indeed, in addi-
tion to the Poisson–Gaussian mixed noise [7,8], these images suffer
from the partial volume effect [9], the low spatial resolution, and
the low contrast [10–12]. All these physical degradations limit the
quality of PET image and consequently the corresponding (TAC).
Undoubtedly, the quality of PET images has an impact on the TACs
quality and therefore on the assessment of the parameters of inter-
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est. In order to achieve a better derived PET TACs quality and hence
gaining insight of metabolic mechanism, many techniques were
proposed. To reduce the noise in PET images, the Gaussian filter
was firstly used in the reconstruction algorithms, as a simple tech-
nique [13]. Although, this filter gives a good result in homogenous
regions, it blurred the edges and degrades the spatial resolution. To
overcome the modest performance of the Gaussian filter, investi-
gators [14] have extended its proprieties to develop the Bilateral
filter where noise is reduced while ROI-edges are preserved. How-
ever, its major disadvantage was smoothen-up the textures and the
edges since its coefficients are calculated without considering the
entire region. To overcome these limitations, other researchers [15]
have suggested to refer to kinetic information to enhance the per-
formance of this filter. They incorporated the similarity between
the voxel-wise TACs employing the scheme of Bilateral filter. Other
works [7] extended the filter to the trilateral filter and explored it to
avoid the loss of some quantitative information. Recently, a more
sophisticated filter namely non-local means (NLM), was  applied
to the PET images. With various extensions including anatomical
knowledge [16] and a segmentation step [17], the NLM filter has
proved its ability to reduce noise while preserving the structures
and the details. Notably, other researchers exploited multi-scale
transform such as wavelets [18,19] and curvelets [12] to decrease
the noise in PET images. The wavelets were investigated to cor-
rect the quantitative and qualitative information in PET images
[20–22] and they are still used by many researchers in recent
works [23–25]. These transformations allowed the separation of
the signal from noise and succeeded to improve the SNR with sig-
nificant gains. With wavelet decomposition, at each scale, they
analyzed the noise level separately with adaptive denoising algo-
rithm. However, wavelets do not lead to a good representation of
the anisotropic elements in images. Therefore, another multi-scale
transform like curvelets were proposed to guarantee better perfor-
mance by extending the wavelet properties [12]. Moreover, several
attempts to denoise dynamic PET image were proposed by using the
temporal information from dynamic PET image [21,26,27]. These
methods incorporated both spatial and temporal characteristics of
the PET image with different spatial algorithms. Recently, several
authors [28] have developed an iterative deconvolution and HYPR
denoising method to directly improve the image derived input
functions of the PET image. In this paper, we propose a new frame-
work of noise reduction in dynamic PET sequences of small animal
heart based on multi-scale and non-local means method (MNLM).
We extended the NLM filter to take into account the temporal corre-
lation between images in the dynamic measurement. We  exploited
in addition both the Shearlet transform and the wavelet transform
to benefit from their complementary properties. In our earlier work
[29], we applied the extended version of the NLM (ENLM) on pre-
clinical dynamic PET data. In this work, we continued our approach
by adding a new framework based on another multi-scale trans-
form and with a new combination between this transform and the
ENLM. To evaluate the performance of the proposed technique, we
use simulated phantom and preclinical rat study data. We  com-
pared denoising algorithm with three states of the art techniques
for PET images: the Gaussian filter, the wavelet thresholding and
the NLM algorithm. The results showed a significant reduction of
noise with the preservation of the ROI-edges and the fine details.
Qualitatively, both SNR and contrast were enhanced in comparison
to the original data.

2. Materials and methods

2.1. Denoising model

In our framework, we will introduce our approach in details by
focusing on the following parts.

2.1.1. The wavelet transform for PET denoising
The undecimated wavelet transform (UWT) is a powerful trans-

form for denoising technique due to the translation invariance.
This propriety makes the UWT  of a translated version of an image
the same as the translated version of the UWT  of this image. In
PET image, UWT  was widely used by many researchers [23,24,30].
Its major advantage is to reduce noise in frequency domain with
shift-invariant properties. Due to its multi-scale representation and
separate decomposition, the UWT  facilitates the noise reduction
because of its ability to separate signal and noise. It decomposed
the image into high frequencies and low frequencies. Accord-
ingly, it is considered as an adaptive denoising algorithm which
attempts to reduce noise and preserve data at each wavelet scale.
In this paper, the UWT  was  used to decompose the image into
two levels where we  defined the ‘BiorSplines’ as a Biorthogo-
nal Wavelet family. Then, we  filtered horizontal, vertical, and
diagonal details with the extended NLM (ENLM) instead of the
traditional technique (thresholding). We  used the ‘à trous’ algo-
rithm [31]to obtain the passage from one resolution to the next
one without decimate coefficients at every transformation level.
It permits the avoidance of the pseudo Gibbs phenomenon which
appears as dark artifacts presented around bright features in the
image. In fact, the original image and both the approximation
coefficients and detail coefficients have the same length at each
level.

2.1.2. The extended NLM filter
The NLM filter was  initially introduced by Buades et al. [32]. The

details of the algorithm are described in Appendix A.
In this work, we  extended the NLM filter (ENLM) to exploit

the PET images proprieties. Notably, dynamic PET pixel is accu-
mulated into a varying temporal map  of a tracer distribution. A
short time bins in the earliest time scan (∼5–10 s) which allows to
capture the rapid change of the kinetic tracer after its administra-
tion and a large time bins (300–600 s) in the latest dynamic frames
to evaluate the uptake of the tracer in the myocardium. Accord-
ingly, the latest images of the sequence are less damaged by noise
than the earliest ones. Consequently, the noise is less important
in the image t + 1 then the image t. Additionally, the PET dynamic
images are characterized by evident spatiotemporal redundancy
between the different frames of the sequence. These proprieties
are then used to extend the NLM filter. The similarity degree was
computed using these relationships between the different images.
The extended version of the NLM filter consisted in computing the
similarity coefficients, in the image t, using pixels in the image t + 1.
We  extended the definition of the weight w(i, j) of the image t by
using the same position at the next image t + 1. The principle of this
extension is illustrated in Fig. 1. Mathematically, the extended NLM
filtered intensity, xENLM(i), of the pixel i, is given by:

xENLM(i, t) = 1∑
j ∈ W(i,t+1)

w(i, j)

∑
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w(i, j) is the weight that measures the similarity between the two
pixels i and j. Ni and Nj are the respective neighborhoods surround-
ing the pixel i and j and W is a search window and t is the time
point.
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