
Automatica 70 (2016) 239–248

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Multi-agent planning under local LTL specifications and event-based
synchronization✩

Jana Tumova, Dimos V. Dimarogonas
School of Electrical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

a r t i c l e i n f o

Article history:
Received 3 March 2015
Received in revised form
3 March 2016
Accepted 18 March 2016
Available online 23 April 2016

Keywords:
Temporal logic
Finite state machines
Formal verification
Path planning
Synchronization
Decentralized control
Robot control

a b s t r a c t

We study the problem of plan synthesis for multi-agent systems, to achieve complex, high-level, long-
term goals that are assigned to each agent individually. As the agents might not be capable of satisfying
their respective goals by themselves, requests for other agents’ collaborations are a part of the task
descriptions. We consider that each agent is modeled as a discrete state-transition system and its task
specification takes a form of a linear temporal logic formula. A traditional automata-based approach to
multi-agent plan synthesis from such specifications builds on centralized team planning and full team
synchronization after each agents’ discrete step, and thus suffers from extreme computational demands.
We aim at reducing the computational complexity by decomposing the plan synthesis problem into finite
horizon planning problems that are solved iteratively, upon the run of the agents. We introduce an event-
based synchronization that allows our approach to efficiently adapt to different time durations of different
agents’ discrete steps. We discuss the correctness of the solution and find assumptions, under which the
proposed iterative algorithm leads to provable eventual satisfaction of the desired specifications.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, a considerable amount of attention has been
devoted to synthesis of robot controllers for complex, high-level
missions, such as ‘‘periodically survey regions A, B, C , in this order,
while avoiding region D’’, specified as temporal logic formulas.
Many of the suggested solutions to variants of this problem rely
on a hierarchical procedure (Bhatia, Maly, Kavraki, & Vardi, 2011;
Kloetzer & Belta, 2008; Kress-Gazit, Fainekos, & Pappas, 2009;
Wongpiromsarn, Topcu, & Murray, 2010): First, the dynamics of
the robotic system is abstracted into a finite transition system
using e.g., sampling or cell decomposition methods. Second,
leveraging ideas from formal verification, a discrete plan that
meets the mission is synthesized. Third, the plan is translated
into a controller for the original system. In this work, we focus
on a multi-agent version of the above problem. We consider a
heterogeneous team of robots, that are assigned a temporal logic

✩ This work was supported by the EU STREP RECONFIG, and by the H2020 ERC
Starting Grant BUCOPHSYS. Thematerial in this paperwas partially presented at the
2014 American Control Conference, June 4–6, 2014, Portland, OR, USA. This paper
was recommended for publication in revised form by Associate Editor Jan Komenda
under the direction of Editor Christos G. Cassandras.

E-mail addresses: tumova@kth.se (J. Tumova), dimos@kth.se
(D.V. Dimarogonas).

mission each. As the robots may not be able to accomplish their
missions without the help of the others, the specifications may
contain requirements on the other team members’ behavior. For
instance, consider a warehouse solution with two mobile robots.
A part of the first robot’s mission is to load an object in region A,
but it is not able to load it by itself. Therefore, the mission also
includes a task for the second robot, to help loading. The goal
of this paper is to efficiently synthesize a plan for each agent,
such that each agent’s mission is met. We follow the hierarchical
approach to robot controller synthesis as outlined above and we
narrow our attention to the second step of the approach, i.e., to
generating discrete plans. The application of the algorithm that we
propose is, however, not restricted to discrete systems: For the first
step of the hierarchical approach, numerous methods for discrete
modeling of robotic systems can be used (see, e.g., Kloetzer & Belta,
2008; Kress-Gazit et al., 2009; LaValle, 2006;Wongpiromsarn et al.,
2010 and the references therein); for the third step, low-level
controllers exist that can drive a robot from any position within
a region to a goal region (see, e.g., Belta & Habets, 2006). The
agents can, but do not have to, mutually synchronize after the
execution of their respective discrete steps. The desired plans thus
comprise not only of the agents’ discrete steps to be taken, but
also their synchronizations. Besides the satisfaction of all agents’
missions, our goal is to avoid unnecessary synchronization in order
to improve the team performance.

http://dx.doi.org/10.1016/j.automatica.2016.04.006
0005-1098/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2016.04.006
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2016.04.006&domain=pdf
mailto:tumova@kth.se
mailto:dimos@kth.se
http://dx.doi.org/10.1016/j.automatica.2016.04.006


240 J. Tumova, D.V. Dimarogonas / Automatica 70 (2016) 239–248

As a mission specification language, we use Linear Temporal
Logic (LTL), for its resemblance to natural language (Jing, Finucane,
Raman, & Kress-Gazit, 2012), and expressive power. Here, we built
LTL formulas over services, i.e., events of interest associated with
execution of certain actions rather than over atomic propositions,
i.e., inherent properties of the system states. Instead of evaluation
of the specification as a conjunction of LTL formulas over thewhole
team behaviors, we propose the notion of satisfaction of an LTL
formula from local perspective. This way, the problem of finding a
collective team behavior is decomposed into several subproblems,
enabling us to avoid the straightforward, but expensive fully
centralized planning. The contribution of this paper can be
summarized as the introduction of an efficient, iterative, finite
horizon planning technique in the context of bottom-up plan
synthesis for multi-agent systems from local LTL specifications.
To our best knowledge, such an approach has not been taken
to address the multi-agent LTL planning before. Our algorithm
is adaptive in the sense that even if the real behavior of the
team is not as planned due to unpredictable time durations of
the agents’ steps, the event-based synchronization and replanning
still guarantees the satisfaction of all the tasks. This feature
can be especially beneficial in heterogeneous multi-robot motion
and task planning problems, where individual robots traverse
their common environment at different speeds. This paper builds
on our earlier work in Tumova and Dimarogonas (2014). In
addition, it relaxes the assumption that the agents synchronize
after every discrete step of theirs and introduces the event-based
synchronization and replanning.

Multi-agent planning from temporal logic specification has
been explored in several recent works. Planning from computa-
tional tree logic was considered in Quottrup, Bak, and Zamanabadi
(2004), whereas in Kloetzer, Ding, and Belta (2011) and Loizou and
Kyriakopoulos (2005), the authors focus on planning behavior of a
team of robots from a single, global LTL specification. A fragment
of LTL has been considered as a specification language for vehicle
routing problems in Karaman and Frazzoli (2011), and a general
reactivity LTL fragment has been used in Wiltsche, Ramponi, and
Lygeros (2013). Decentralized control of a robotic team from lo-
cal LTL specification with communication constraints is proposed
in Filippidis, Dimarogonas, and Kyriakopoulos (2012). However,
the specifications there are truly local and the agents do not im-
pose any requirements on the other agents’ behavior. Thus, the fo-
cus of the paper is significantly different to ours. As opposed to our
approach, in Chen, Ding, Stefanescu, and Belta (2012) and Ulusoy,
Smith, Ding, Belta, and Rus (2013), a top-down approach to LTL
planning is considered; the team is given a global specification and
an effort is made to decompose the formula into independent local
specifications that can be treated separately for each robot. In Guo
and Dimarogonas (2015), bottom-up planning from LTL specifica-
tions is considered, and a partially decentralized solution is pro-
posed that takes into account only clusters of dependent agents
instead of the whole group. A huge challenge of the previous ap-
proach is its extreme computational complexity, which we tackle
in this work by applying receding horizon approach tomulti-agent
planning. Receding horizon approach was leveraged also inWong-
piromsarn et al. (2010) to cope with uncertain elements in an
environment in single-robot motion planning. To guarantee the
satisfaction of the formula, we use an attraction-type function that
guides the individual agents towards a progress within a finite
planning horizon; similar ideas were used in Ding, Belta, and Cas-
sandras (2010) and Svorenova, Tumova, Barnat, and Cerna (2012)
for a single-agent LTL planning to achieve a locally optimal behav-
ior.

The rest of the paper is structured as follows. In Section 2,
we fix the preliminaries. Section 3 introduces the problem and
summarizes our approach. In Section 4, the details of the solution
are provided. In Section 5, we provide analysis and discussion of
the solution. We present simulation results in Section 6, and we
conclude in Section 7.

2. Preliminaries

Given a set S, let 2S, and Sω denote the set of all subsets
of S, and the set of all infinite sequences of elements of S,
respectively. A finite or infinite sequence of elements of S is called
a finite or infinite word over S, respectively. The ith element of
a word w is denoted by w(i). A subsequence of an infinite word
w = w(1)w(2) . . . is a finite or infinite sequence of its elements
w(i1)w(i2) . . . , where ∀1 ≤ j. 1 ≤ ij ≤ ij+1. A factor of w is a
continuous, finite or infinite, subsequencew(i)w(i+1) . . . ,where
1 ≤ i. A prefix of w is a finite factor starting at w(1), and a suffix
of w is an infinite factor. N and R+

0 denote positive integers and
non-negative real numbers, respectively.

A transition system (TS) is a tuple T = (S, sinit , A, T ), where S is
a finite set of states; sinit ∈ S is the initial state; A is a finite set of
actions; and T ⊆ S × A → S is a partial deterministic transition
function. For simplicity, we denote a transition T (s, α) = s′ by
s

α
−→ s′. A trace of T is an infinite alternating sequence of states

and actions τ = s1α1s2α2 . . . , such that s1 = sinit , and for all i ≥ 1,
si

αi
−→ si+1. A trace fragment τ̂ is a finite factor of a trace τ that begins

and ends with a state.
A linear temporal logic (LTL) formula φ over the set of atomic

propositions Π is defined inductively: (i) π ∈ Π is a formula, and
(ii) if φ1 and φ2 are formulas, then φ1 ∨ φ2, ¬φ1, Xφ1, φ1 Uφ2,
Fφ1, and Gφ1 are each a formula, where ¬ and ∨ are standard
Boolean connectives, andX,U, F, andG are temporal operators. The
semantics of LTL are defined over infinite words over 2Π . π ∈ Π

is satisfied on w = ϖ1ϖ2 . . . if π ∈ ϖ1. Xφ holds true if φ is
satisfied on the word that begins in the next position ϖ2, φ1 Uφ2
states that φ1 has to be true until φ2 becomes true, and Fφ andGφ
are true if φ holds on w eventually, and always, respectively. We
denote the satisfaction of φ on a word w as w |= φ. The set of all
words accepted by an LTL formula φ is L(φ). For full details see,
e.g., Baier and Katoen (2008).

An automaton is a tuple A = (Q , qinit , Σ, δ, F), where Q is a
finite set of states; qinit ∈ Q is the initial state; Σ is an input
alphabet; δ ⊆ Q × Σ × Q is a non-deterministic transition
relation; and F is an accepting condition. It is deadlock-free if
∀q ∈ Q , σ ∈ Σ . δ(q, σ ) ≠ ∅. We define the set of states
δ̂k(q) reachable from q ∈ Q in exactly k steps inductively as
δ̂0(q) = {q}, and δ̂k(q) =


q′∈δ̂k−1(q){q

′′
| ∃ σ ∈ Σ . (q′, σ , q′′) ∈

δ}, ∀k ≥ 1. A Büchi automaton (BA) is an automaton with the
accepting condition F ⊆ Q . A run of the BA B from q1 ∈ Q
over w = σ1σ2 . . . ∈ Σω is a sequence ρ = q1q2 . . . , such that
∀i ≥ 1. (qi, σi, qi+1) ∈ δ. A run ρ is accepting if it intersects F
infinitely many times. A word w is accepted by B if there exists
an accepting run over w from the state qinit . The set of all words
accepted by B is L(B). Any automaton (Q , qinit , Σ, δ, F) can be
viewed as a graph (V , E) with the vertexes V = Q and the edges E
given by δ in the expectedway. The standard notation then applies:
A path is a finite alternating sequence of states and transition labels
qiσiqi+1 . . . qk−1σk−1qk, such that ∀i ≤ j < k. (qj, σj, qj+1) ∈ δ.
dist(q, q′) denotes the length of the shortest path between q and
q′, i.e., the minimal number of states in a path q . . . q′. If no such
path exists, then dist(q, q′) = ∞. If q = q′, then dist(q, q′) = 0.
The shortest path can be computed using Dijkstra algorithm (see,
e.g., Cormen, Stein, Rivest, & Leiserson, 2001).

3. Problem formulation and approach

Two general viewpoints can be taken in multi-agent planning:
either the system acts as a team with a common goal, or the
agents have their own, independent tasks. Although we permit
each agent’s task to involve requirements on the others, we adopt
the second viewpoint; to decide whether the agents’ tasks aremet,



Download English Version:

https://daneshyari.com/en/article/695096

Download Persian Version:

https://daneshyari.com/article/695096

Daneshyari.com

https://daneshyari.com/en/article/695096
https://daneshyari.com/article/695096
https://daneshyari.com

