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a  b  s  t  r  a  c  t

World  Health  Organization  (WHO)  indicates  that  cardiovascular  disease  remains  challenging  in  diagnosis
and  treatment.  The  electrocardiogram  (ECG)  is a very  important  diagnostic  assistant  for  cardiac  diseases.
Traditionally,  most  of the  ECG  analysis  methods  are  evaluated  by their  intra-patient  performance,  which
however  may  not  suitable  for inter-patient  cases.  Here,  we  propose  a  complete  classification  system
with  excellent  generalization  ability.  We  first  extract  the  2D-convolutional  and PQRST  features  of  a  sin-
gle  heartbeat  after  preliminary  processing.  We then  balance  the  data  with  the  Random  Over  Sampler
algorithm  after  comparing  several  imbalanced  algorithms.  Finally,  we  use  a Random  Forest  (RF)  classifier
to classify  the  data  according  to the  Association  for the  Advancement  of  Medical  Instrumentation  (AAMI)
standards  (1988).  Results  show  that  RecallM (MR),  PrecisionM (MP)  and  FscoreM (MF)  of  our  proposal  are
all  above  99%.  In  order  to evaluate  the  performance  of  different  methods,  we  designed  inter-patient  and
intra-patient  experiments  separately.  To  further demonstrate  the  robust  and  adaptability  of  our model,
we  then  transferred  it to another  data  set  and  performed  the  experiment.  In  our  experiments,  the  values
of macro-  and micro-metrics  are up  to 99%.  All  of the  results  are  averages  of five  experiments,  and  the
Average  Accuracy  (AA)  of  experiments  applied  here  are  above  99%, which  illustrates  that  our  proposal  is
a  promising  alternative  and  superior  to  most  of  the  state-of-the-art  methods.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

According to the data of the World Health Organization, 30% of
global deaths are due to cardiovascular diseases (CVDs). Thus, the
global burden of cardiovascular is still the most important health-
care issue around the world [1]. Arrhythmias are the most typical
and important cardiovascular diseases, which may  cause tempo-
rary shock and even sudden death. The best assistant to monitor and
diagnose the arrhythmias is ECG, which is a visual signal captured or
measured by placing electrodes on the surface of the body to detect
voltage changes. Cardiologists often analyzed the ECG directly in
the past, whereas computer-aided classification of arrhythmias has
become popular more recently [2].

A fully automatic classification of arrhythmias includes four
parts: ECG processing, heartbeat segmentation, feature extraction,
and classification. The goal of ECG processing is to make the sig-
nal clearer and lay the foundation for subsequent experiments, i.e.
ECG denoising [3–5], detection of characteristic points [6], etc. In
the second phase, the ECG is divided into single or multiple periods
of heartbeats by using the heartbeats frequency information [7,8].
In the last stage, common classification methods such as Artificial
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Neural Network (ANN) [9], Bayesian Network (BN) [10], Random
Forest (RF) [11], Support Vector Machine (SVM) [12,13], etc. have
been used to obtain the true class of the samples.

Feature extraction plays an important role throughout the pro-
cess, and various methods have been proposed and validated.
For classical methods, features are exacted from the time domain
such as R-R intervals [14,15] and QRS width [16] as well as
frequency domain for example S-transform [17,18], wavelet trans-
form [9,15,19–24], Fourier transform [20,25,26], Modified Cosine
Transform [19,20], etc. After feature exaction, there would be
feature selection to remove related characteristics and reduce
dimensions to improve the final accuracy, generally including prin-
cipal component analysis (PCA) [9,21], linear discriminant analysis
(LDA) [21], decision tree (DT) [22], independent component analy-
sis (ICA) [14,15,21], etc. However, these methods are usually used
for extracting handcrafted features from the ECG waveforms, and
one of issues is incomplete use of information provided by the
source data. Deep learning techniques can overcome this short-
coming. Previously [12], an electrocardiogram beat classification
method was proposed based on Deep Belief Networks (DBN) with
features extracted by DBN and timing interval. In [27], the authors
used a labeled HRV data sets to train a Convolutional Neural Net-
works (CNN) model as a supervised approach, and used Stacked
Autoencoders with Restricted Boltzmann Machines to obtain unla-
beled features. According to the literature [28,29], 1D-CNN could
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Fig. 1. The figures a and b stand for the original heartbeat and its feature map  after
convolution operation separately. The difference between each other is obvious.

be used for patient-specific classification with patient-specific and
relatively small common data, which could save training time and
be easily applied to the wearable device. An approach using Staked
Denoising Autoencoders (SDAEs) with sparsity constraint for unsu-
pervised feature representation and Active Learning (AL) to fine
tuning Deep Neural Network (DNN) could efficiently match the
statistical distribution of the data [30], etc.

All of the methods deal with 1D-ECG signals, and we put forward
an idea of switching 1D-ECG signals into 2D-images for extracting
convolutional features for the first time since others [28] proved
that the simple convolutional neural network could improve the
training accuracy compared with other methods. However, we
found that the 2D-convolutional feature maps are blurred (Fig. 1),
especially at the key points (i.e., PQRST positions) which can affect
experimental results. Meanwhile, ECG data sets are extremely
imbalanced, and this can reduce the recognition accuracy of the
minority class. To reconcile those shortcomings, we  proposed a
classification system (Fig. 2). Firstly, single heartbeat signals are
obtained by preprocessing and segmentation. Secondly, PQRST fea-
tures are exacted from single heartbeat signals for making up the
blurred issue of convolutional maps and 2D images are created by
connecting the dots of the 1D single heartbeat signals. Then, the
highly abstract features of a simple CNN are extracted and fused
with PQRST features. After imbalanced processing, the fused fea-
tures of balanced data set are classified by a simple RF classifier.
This is the first time that deep features (CNN) are fused with shal-
low features (PQRST) for extracting representative features to the
best of our knowledge although feature fusion has been reported in
shallow-with-shallow [31] and deep-with-shallow [12]. To prove
the generalization of the model, we use another data set to evaluate
the performance of our model.

The rest of the paper is organized as follows: Section 2 intro-
duces the main methods used in this paper involving feature
extraction, imbalanced data processing, the classifier and learning
rate. Section 3 explains the publicly available ECG data sets and the
standards we used as well as performance metrics for experiments.
Section 4 is results and discussion. Finally, conclusions and future
directions are detailed in Section 5.

2. Methods

Our research concentrates on dealing with imbalanced data pro-
cessing, feature fusion, parameter adjustment as well as classifier
design. All of the algorithms in this section expound around these
four parts.

For clearer presentation, we establish here some of the basic
notions used in most of the subsections. Considering the origi-
nal data set after selecting and heartbeat segmentation OS has m
examples, we define: OS = {(xi, yi)}, i = 1, . . .,  m,  where xi ∈ X = {f1,
f2, . . . fn} is a n-dimensional instance. yi ∈ Y = {1, 2, . . . z} is the label
of xi. Balanced data set based on original data BOS = {(xnewi, ynewi)},
i = 1, . . .,  M has N dimensions where M is the sum of balanced data
set.

2.1. Feature fusion

2.1.1. Convolutional features
CNN is a typical method for deep learning based on its character-

istics that automatically highlights and extracts the most valuable
high dimensional features through convolutional operation from
the input data. It pays more attention to the local features and
their positions, i.e., the position among other features is determined
when the local feature is extracted. Otherwise, on the same feature
maps of CNN, the weights of neurons are the same resulting in net-
work learning in parallel, which markedly saves learning time. In
this paper, considering that samples belong to simple line types, we
proposed a simple CNN that contains two  convolutional layers, two
Pooling layers, three Full-Connected (FC) layers and two  Dropout
layers (Fig. 3).

As explained in [27], the output of convolutional layers Cx,y can
be computed according to Eq. (1):

C(x,y) = h

⎛
⎝

km∑
i=1

kn∑
j=1

OS(x′+i,y′+i) × w(i,j) + b(i,j)

⎞
⎠ , (1)

where the two-dimensional input data is OS(x,y), the kernel size
is (km, kn) and the steps of convolution are (sx, sy), w(i,j), b(i,j) are
weights and bias of the kernel and x′ = x · sx − 2, y′ = y · sy − 2.

Applying to our designed network, we used 96 * 72 two-
dimensional gray images to simulate digital heartbeats obtained
from MIT-BIH data set and utilized four convolutional kernels
whose sizes are all

{{
1, 1, 1

}
,
{

1, −7, 1
}
,
{

1, 1, 1
}}

to empha-
size edge information in first layer, and eight convolutional kernels
with (5, 5) size for second convolutional layer to detect the edges of
the blurred feature maps of first layer. Because the texture informa-
tion is more valuable than the background, we used a max-pooling
method (selecting the max-value of neighborhood characteristics
corresponding to the pooling window) and set Px = 2, Py = 2, which
reduces the number of features in each feature map  by four. In the
fully connected part, we  assembled a network with a hidden layer
and set 200, 100, 5 neurons per layer. In that case, two  dropout
layers [32] are embedded into every two  FC layers for the purpose
of enhancing the network generation ability and preventing over-
fitting. The training and testing process of the dropout layers is
presented in Eq. (2):

Train : D(i,j) = w(i,j)

∣∣p × fc(i,j) + b(i,j),

Test : D(i,j) = w(i,j) × fc(i,j) × P + b(i,j).
(2)

Here, fc(i,j), D(i,j) are the input and output of the layer, w(i,j)

∣∣p is
the weight of selecting specific number of neurons according to
retaining probability P, w(i,j) is the weight of all of neurons. Relu is
adopted as the activation function of each layer except that softmax
is used in the final classification.

The determination of the 2D-CNN consists of data feed forward
pass and error back-propagation pass [35]. We  used a cross-
entropy cost function to adjust the network parameters, which
were expressed as Algorithm 1:

Algorithm 1. Cross-entropy cost function for network parameter
adjustment.

Require: (x1, y1), . . ., (xm , ym), . . .,  (xn , yn)
Ensure: w′

i,j
, b′
i,j

1: Randomly select k train samples from original data set;
2:  Initialization: w(i,j) → 0, b(i,j) → 0, lr → r;
3: for i=1 to k do
4: Storage target output Si;
5:  Calculate output vector I(i,j) of intermediate layer and actual output

Ai of last layer;
6: Cost calculation:
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