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a  b  s  t  r  a  c  t

Although  continuous  glucose  monitoring  (CGM)  devices  have  been  the  crucial  part  of  the  artificial  pan-
creas,  their  success  has been  discounted  by random  measurement  noise.  The  difficulty  of  denoising
methods  for CGM  is  that  the filter  parameters  are  hard  to be  determined  to well  reflect  the internal  blood
glucose  dynamics  and  the  real  noise  level.  Besides,  the  noise  level  may  change  from  device  to  device,
subject  to  subject  and also  within  the subject  as  time  goes  on which  thus  requires  that  the filter  parame-
ters  should  be  adjusted  to follow  the  noise  changes.  In this  paper,  we proposed  an  automatic  CGM  signal
denoising  method  which  covers  three  important  components.  First,  the state  transition  matrix  which
reveals  the internal  blood  glucose  dynamics  and plays an  important  role  in  determining  filter  parameters
can  be  estimated  in response  to  different  patients.  Second,  the  real noise  level  can  be  estimated  which  are
used  to set  the  values  of filter  parameters  properly.  Third,  a responsive  filter  updating  rule  is developed
which  can  judge  whether  the  values  of  filter  parameters  should  be  updated  in  response  to  the variability
of  signal-to-noise  ratio.  The  process  of dealing  with  the  CGM signals  is  executing  as  follows:  the model
parameters  and  the  noise  level  are  evaluated  using  Expectation  Maximization  (EM) algorithm  which  can
fix  proper  filter  parameters  for the  current  signals.  Then,  a confidence  interval  is  defined  by  computing
the  power  spectral  density  (PSD)  of  the  CGM  signals  to identify  the  changes  of noise  level  which  can  tell
whether  or  not  the  parameters  of Kalman  filter (KF)  should  be adjusted.  The  above  issues  are  investigated
based  on  thirty  in  silico  subjects  and  ten clinical  subjects.  The  proposed  method  can  work  well  to  identify
the  changes  of  noise  level  and  determine  proper  filter  parameters.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Diabetes is a global health problem that affects about 387 mil-
lion people around the world up to 2014 representing 8.3% of the
adult population and caused 4.9 million deaths in 2014 [1]. The
cost for diabetes in health expenditure was at least USD 612 bil-
lion dollars which occupied 11% of total spending on adults in 2014
[2]. Diabetes can cause many complications including heart dis-
ease, kidney failure, stroke, foot ulcers and so on [3]. There are two
types of the diabetes mellitus: Type 1 diabetes mellitus (T1DM) and
Type 2 diabetes mellitus [4]. Insulin therapy is crucial for diabetes
patients, since it can help patients to improve their life quality. The
ability of monitoring blood glucose has enhanced tremendously
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thanks to the self-monitoring of blood glucose (SMBG) [5–7]. How-
ever, SMBG measurements which typically lead to uncomfortable
finger sticking methods are only collected three to four times a day
which cannot reflect blood glucose variation of diabetic patients
immediately. So the glucose concentration control based on SMBG
is usually suboptimal.

Blood glucose measurement techniques can be divided into
invasive measurement and non-invasive measurement. A non-
invasive blood glucose monitoring system can avoid substantial
pain to the patients [8,9], while invasive blood glucose measure-
ment can provide highly accurate readings [10]. In the past few
years, the development of the so-called artificial pancreas has
helped to maintain glucose concentration within safe ranges for
T1DM patients [11]. Continuous glucose monitoring (CGM) devices
are one of the key parts of the artificial pancreas and can be regard
as a valid alternative to conventional SMBG method [12–15]. CGM
devices can sample subcutaneous glucose concentration as fre-
quently as one minute and can store the data for several days. In an
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online application, CGM signals can generate hypo/hyperglycemic
alert which will help patients make corrective decisions to pre-
vent severe events immediately [16,17]. Furthermore, CGM data
are the input to the artificial pancreas controller which determines
the infusion of the insulin. Thus the quality of the CGM data is of
great importance for T1DM patients.

Unfortunately, the accuracy and the efficiency of the CGM
signals have to be improved [18]. Missing true alert events or gener-
ating false alerts depends largely on the reliability of CGM signals.
Cobelli et al. [19–21] have pointed out the CGM sensors affected
by random noise and calibration error can markedly affects the
performance of the abnormal glycemic event alert system. In fact,
in order to improve the quality of the CGM signals, the random
noise should be removed from the data through the digital filter
[19–21]. The purpose of filtering is to obtain the true signals from
the measurement signals.

Low-pass filtering is one of the most common methods to
remove the noise from the measured signals. One of the disad-
vantages of low-pass filtering is that it will introduce large delay
which distorts the true signals. For alert of abnormal glycemic
events, the delayed signals seem to be useless since it cannot
generate alarm timely which is of great importance for patients
to take corrective action to avoid hyper/hypoglycemia. Medtronic
MiniMed used a finite impulse response (FIR) filter whose equa-
tion is ŷk = a0yk + a1yk−1 + · · · + aMyk−M to reduce random noise
in Guardian RT where ŷk is filtered signals and yk is measured val-
ues [22,23]. In practice, a seventh-order filter was in usual used [24].
DexCom used an infinite impulse response filter (IIR) whose equa-
tion is described as ŷk = −a1ŷk−1 − · · · − aNŷk−N + b0yk + b1yk−1 +
· · · + bMyk−M in Seven Plus to elaborate the signals [25]. The obvi-
ous problems of these methods are that there is no criterion to
guide how to determine the proper parameters to deal with the
measured signals. Then another method called Kalman filter (KF)
was adopted to improve the filter performance. Kalman filter is a
common approach using recursive maximum likelihood for state
estimation. At first, Bequette [26] used Kalman filter to compen-
sate the blood glucose to subcutaneous glucose transport lag and to
predict the future blood glucose. Then KF was used to deal with the
CGM data through constructing improved model by Knobbe and
Buckingham [27]. However, the filter parameters are fixed once
determined which may  not reflect the noise variability. In fact,
the noise level may  change from patient to patient (interindividual
variability) and with time even for the same patient (intraindivid-
ual variability). Facchinetti and Sparacino et al. [28,29] have noticed
these two different kinds of noise changes and first determined KF
parameters by estimating the specific noise level. The denoising
module has been an important part of the “smart sensor” [20,21]
to improve the accuracy and certainty of the CGM sensors. How-
ever, their method continuously estimated and updated the filter
parameters although the noise level may  not change all the time
in practice which increases computation complexity and imposes
heavy burden. Instead of blind filter parameter updating, it is better
to update the KF parameters only when it is necessary. The critical
issue is to develop a proper judgment rule which can determine
whether the noise level has changed so that the filter parameters
should be adjusted. Zhao et al. [30] proposed an automatic denois-
ing method in which the noise level is evaluated using expectation
maximization (EM) algorithm which can fix proper filter parame-
ters for the current signals and a confidence interval is defined by
computing the power spectral density (PSD) of the CGM signals to
tell whether or not the parameters of Kalman filter (KF) should be
adjusted.

However, there are still some problems which may  need to take
careful consideration. First, the state transition matrix which is the
internal description of the system is a crucial parameter for KF.
In previous denoising methods [28–30], the state transition matrix

used for KF was assumed the same for different subjects with T1DM.
The unified state transition matrix may  not accurately describe dif-
ferent glucose dynamics for different subjects, which may  affect the
performance of the KF. Second, the confidence interval is defined by
arbitrarily setting two  adjustable parameters in [30], which cannot
accurately capture the changes of noise level. Third, the automatic
denoising method [30] is only illustrated based on in silico subjects
without considering its feasibility for clinical subjects.

In this paper, the previous automatic denoising method [30]
is further extended by the authors. We  proposed an automatic
glucose monitoring signal denoising method with noise level esti-
mation and responsive filter updating. Here, responsive means the
filter updating is only made as a reaction to the changes of noise
level instead of blind updating. Two  important issues are addressed
in this paper: (1) How to estimate state transition matrix of the
blood glucose for different T1DM individuals? (2) How to properly
quantify the confidence interval to check whether the noise level
has changed? The contribution of this article (i.e., the difference
from previous work [30]) is summarized as below:

(1) The state transition matrix of the filter model is estimated
based on EM algorithm, which can reflect the dynamics of blood
glucose for different patients, instead of using the fixed param-
eters.

(2) A proper confidence interval is defined by quantitatively
analysing the PSD values of high frequency band signals instead
of arbitrarily setting two adjustable parameters.

(3) More illustration results are reported for in silico subjects.
Besides, the proposed method is applied to ten clinical subjects
with enhanced reliability and practicality.

The results show that EM algorithm can estimate the noise
level accurately and thus properly determine the filter parameters
based on thirty in silico subjects and ten clinical subjects. Besides,
the responsive filter updating method can significantly reduce the
computation burden by avoiding blinding updating. Better filter
results are reported by comparing the proposed algorithm with
previous methods.

2. Preliminary

2.1. The conventional Kalman filter

The Kalman filter has always been regarded as an optimal
method to filter and predict data for its simplicity. For digital fil-
ters, if we consider a discrete homogeneous case, we  will obtain the
following model system equation and the measurement equation

x(k + 1) = Ax(k) + w(k) (1)

y(k) = Cx(k) + v(k) (2)

where x(k) is the state vector of the process at time k, A is the
state transition matrix of the process, w(k) is the process noise
vector, usually a zero-mean white Gaussian noise associated with
unknown covariance matrix Q, y(k) is the measurement of x(k) at
time k, C is a connected matrix between the process vector and the
measurement vector, v(k) is a zero-mean white Gaussian measure-
ment noise with unknown covariance matrix R.

In order to estimate state vector x(k) from the measurement
vector y(k), the KF filter is implemented as below

xk−1
k

= Axk−1
k−1 (3)

Pk−1
k = APk−1

k−1AT + Q (4)

Kk = Pk−1
k CT(CPk−1

k CT + R)
−1

(5)
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