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a  b  s  t  r  a  c  t

Motor  imagery  brain-computer  interface  (BCI)  systems  require  accurate  and  fast  recognition  of  brain
activity patterns  for reliable  communication  and interaction.  Achieving  this  accuracy  is  still  a  challenge
because  of  the  low  signal-to-noise  ratio in electroencephalography  signals  and  high  variability  of sen-
sorimotor  rhythms.  To  address  this  need,  we  proposed  a novel  scheme  that combined  a frequency  band
selection  common  spatial  pattern  algorithm  and  a particle  swarm  optimization  least  squares  twin  sup-
port  vector  machine  classifier  for  recognition  of  motor  imagery  patterns.  We  used  self-adaptive  artifact
removal  and  the  common  spatial  pattern  method  to  obtain  the  most  distinguishable  features.  To improve
the  classification  results,  we  investigated  linear,  polynomial,  sigmoid,  wavelet  and  gaussian  kernel  func-
tions  for the  nonlinear  least  squares  twin  support  vector  machine  classifier.  Particle  swarm  optimization,
chaotic  particle  swarm  optimization,  a  genetic  algorithm  and  a  quantum  genetic  algorithm  were  com-
pared  and  used  to tune  the  hyper-parameters  for the  classifier.  To  evaluate  our  proposed  method,  we  used
BCI Competition  IV  data  sets  2A  and  2B. Experimental  results  showed  that  for our  method,  the  average
recognition  accuracy  of  data  set  2A  is  increased  by  6.10%,  6.71%,  3.87%,  4.01%,  2.55%  and  4.86%  compared
with  the  results  obtained  by  regularization  projection  twin  support  vector  machine,  twin  support  vector
machine,  support  vector  machine,  linear  discriminant  analysis,  back  propagation  and  probabilistic  neu-
ral network,  respectively.  Using  data set  2B, the  average  recognition  accuracy  achieved  by  our  method
was  greater  by  4.73%,  5.46%,  4.45%,  4.10%,  8.62%  and  4.27%,  respectively.  The  standard  deviation  of  the
accuracy  values  of  the  two  data  sets  decreased.  Furthermore,  compared  with  the  traditional  support  vec-
tor  machines,  our proposed  method  achieved  a faster  central  processing  unit  running  time  for  training
classifiers.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Brain-computer interface (BCI) research is an emerging field
that explores the use of electrical brain activity to control devices
external to the body. There are a wide variety of applications for
BCI in diverse areas, ranging from control of neuroprosthetics for
rehabilitation to operation of semi-autonomous cars, entertain-
ment devices, and military equipment [1,2]. Motor imagery BCI
(MI-BCI) systems are designed to detect and decode a user’s imag-
ined images of a motor task, such as the imaged hand movement
needed to roll a wheelchair forward or to move a curser left or right
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on a computer screen. The MI-BCI then creates output that imple-
ment the desired action. There are many invasive and non-invasive
approaches to acquiring and recording brain signals. Among the
non-invasive methods, electroencephalography (EEG) has proven
to be the best recording technique because of its excellent temporal
resolution, usability, low set-up costs, and widespread availability
[3–7].

A subject’s imagined movements of different body parts can
cause power decrease in the sensorimotor rhythms of the EEG
at corresponding “active” cortex areas, i.e., mu  (8–13 Hz) and
beta (18–30 Hz) rhythms, called event-related desynchronization
(ERD). Meanwhile, a power increase in sensorimotor rhythms,
called event-related synchronization (ERS), might be observed at
other “idling” areas during motor imagery [8,9]. Though these
frequency bands are useful for detecting MI  tasks, the ERD/ERS
patterns exhibit variability across subjects. In fact, variability has
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been detected even across trials for the same subject. Further-
more, EEG signals may  be contaminated with various artifacts, such
as electromyogram (EMG) and electro-oculogram (EOG) signals.
Therefore, it is necessary to perform EEG signal preprocessing and
feature extraction in order to represent input signals in a reduced
feature space and improve MI  pattern recognition. A variety of
feature extraction methods have been proposed [10–14]. Among
them, common spatial pattern (CSP) feature extraction is a super-
vised algorithm for learning spatial filters, and it has achieved a high
performance in the multi-channel EEG signal filter in recent years
[15–17]. The ERD/ERS patterns in the corresponding frequency
bands are distinct, but it is variable for different subjects. Subject-
specific frequency band selection is necessary for feature extraction
which can improve the inter-subject robustness of MI-based BCI
[18].

The core of an MI-BCI system is its discrimination algorithm.
Many useful discriminant methods have been proposed to improve
the robustness and accuracy of BCIs, such as the locality preserving
projection method based on a self-regression model [19], the lin-
ear discriminant algorithm [20], the probabilistic methods [21,22],
and various neural networks[23–25]. Support vector machines
(SVMs) have also been used frequently for classification of EEG
patterns, including an SVM combined with intelligent optimiza-
tion algorithms that were certified to give high quality results in
BCI [14,26,27].

The traditional SVM involves the solution of a single quadratic
programming problem (QPP). This approach can be time-
consuming for data sets that have a large number of features.
Also, an SVM involves obtaining the predicted label using a sin-
gle maximum-margin hyperplane. The twin SVM (TWSVM), first
proposed by Jayadeva et al. [28], is based on the idea that a bet-
ter prediction can be obtained using two non-parallel hyperplanes.
TWSVMs are 4 times faster than conventional SVMs, and they
have a solid theoretical foundation with promising generalization
[29–31]. Recently, TWSVMs have been used successfully in the
bioinformatics field [32–34]. Many scholars have contributed to the
study of TWSVMs, achieving notable results [35–41].

In real-world applications, EEG signals are non-stationary and
are often characterized by their shifting nature [17]. The TWSVM
classifier is suitable for shifting data because it aims to find two
non-parallel hyperplanes to classify the testing data. In contrast,
the least squares twin SVM (LSTSVM) considers equality constraints
rather than inequality constraints, making it simple to program
complex quadratic problems, an approach that also allows for eas-
ier real-time hardware implementation. If the kernel parameters
and penalty parameters are appropriate, the LSTSVM classifier will
achieve better generalization ability, as compared with the TWSVM
classifier [42–46]. For our research, we designed a more robust,
high-efficiency motor imagery recognition system by introducing
an LSTSVM classifier for motor imagery pattern recognition. To the
best of our knowledge, this approach is novel to this field.

In our study, we used adaptive EOG artifact removal and a
self-adaptive frequency band selection CSP algorithm for EEG pre-
processing and feature extraction. Because the parameters of the
classifier can affect the classification results significantly, we tuned
the parameters of our proposed classifier by comparing our method
with a genetic algorithm (GA) and particle swarm optimization
(PSO) and also with their improved methods, a quantum genetic
algorithm (QGA) and chaotic particle swarm optimization (CPSO).
Furthermore, we compared traditional SVMs and other machine
learning methods with our proposed method in terms of classifica-
tion results and CPU running time.

The remainder of this paper is organized as follows. Section 2
described the related work and methods for this study. In section
3, we provide details of our novel self-adaptive preprocessing, fea-
ture extraction and bio-inspired optimization techniques based on

an LSTSVM scheme for MI-BCI. Our experimental results and discus-
sion are provided in Section 4 and Section 5, respectively. Section
6 concludes the paper.

2. Methods

2.1. Least squares twin SVM

Consider a binary classification problem of classifying m1 data
points belonging to class +1 and m2 data points belonging to class
−1 in the n-dimensional real space �n. Let matrix X1in �m1×n rep-
resent the data points of class +1 and matrix X2in �m2×n represent
the data points of class −1. Linear LSTSVM seeks two non-parallel
hyperplanes in �n, as shown in equation (1).{
�w1 + b1 = 0

�w2 + b2 = 0
(1)

Instead of inequality constraints, LSTSVM determines two  non-
parallel hyper-planes by solving the following pair of linear
equations (2) and (3).⎧⎨
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where e1 ∈ � m1×1 and e1 ∈ � m2×1represent the vector of 1’s. �,
� are slack variables and c1,c2 are positive penalty parameters. The
solution of equations (2) and (3) determines hyper-plane parame-
ters as shown in formulas (4) and (5).[
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Where A = [X1 e1] and B = [X2 e2].Thus the linear LSTSVM com-
pletely solves the classification problem with just two matrix
inverses.

Once the weights and biases of the two non-parallel separating
hyperplanes as given in Equation (1) are obtained from equation (4)
and (5), LSTSVM classifier assigns the class according to the distance
of a given data point from its corresponding hyper-plane. The point
is classified into a class which lies nearest to it. LSTSVM predicts the
class according to the following decision function (6).

f (�) = argmini=+1,−1
|�wi + bi|

‖wi‖
(6)

where | · | denotes the absolute value.
LSTSVM can also be extended to handle nonlinear kernels by

considering two  non-parallel kernel generated surfaces as shown
in equation (7).{
K(�, X)u1 + �1 = 0

K(�, X)u2 + �2 = 0
(7)

where X =
[
X1
X2

]
and K is any arbitrary kernel.
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