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a b s t r a c t

The robust controlled invariance describes the ability tomaintain, using suitable control actions, the state
of a system in a set for any value of the disturbances. By considering a class of monotone systems and
a multidimensional interval as target set, we obtain a simple characterization of the robust controlled
invariance. We then give a method to stabilize the state into a robust controlled invariant interval when
it is initialized outside of the target set. These results are applied to a model for the temperature control
in an intelligent building equipped with automated underfloor air distribution (UFAD) and implemented
in a small-scale experimental UFAD flat.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For autonomous systems, the notion of positively invariant
set describes the property that trajectories initialized in a set
remain inside this set forever. An extensive survey on the topic
of invariance can be found in Blanchini (1999). When a control
input is used to enforce the invariance, we talk about controlled
invariance, independently introduced in Basile and Marro (1969)
and Wonham and Morse (1970). An overview of the uses and
results on controlled invariant sets for linear systems is given in
Trentelman, Stoorvogel, and Hautus (2001). In this paper, we are
interested in the study of robust controlled invariance where the
robustness refers to bounded external disturbances.

In this paper, we deal with a class of nonlinear systems
satisfying amonotonicity property.Monotone systems are systems
which preserve partial orderings on the states, see Smith (1995)
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for autonomous systems and Angeli and Sontag (2003) for
controlled systems. We show that this monotonicity property,
associated with simple sets (multidimensional intervals), can
be used to obtain a characterization for the robust controlled
invariance, using only the extremal values of each state, control
and disturbance input. We also show how these robust controlled
invariant sets can be used to synthesize robust stabilizing
controllers for monotone control systems. To the knowledge of
the authors, there are very few works on (controlled) invariance
of monotone nonlinear systems: invariance of intervals for
autonomous monotone systems has been considered in Abate,
Tiwari, and Sastry (2009);methods for approximating themaximal
controlled invariant set for monotone discrete time systems
without disturbance are presented in Lara, Doyen, Guilbaud,
and Rochet (2007); a controller for reference tracking in a
monotone SISO system is synthesized under state constraints in
Chisci and Falugi (2006); finally, robust controlled invariance are
considered for a class of monotone systems with planar outputs
in Ghaemi and Del Vecchio (2014). Monotone systems can be
found in numerous fields such as molecular biology (Sontag,
2007), chemical networks (Belgacem&Gouzé, 1999),multi-vehicle
systems (Hafner, Cunningham, Caminiti, & Vecchio, 2013), or
thermal dynamics in buildings, which is the application considered
in this paper. We consider an underfloor air distribution (UFAD)
system based on a 4-room small-scale experiment of a flat. We
apply the results developed in the paper to that system and report
the results obtained on our experimental platform.

http://dx.doi.org/10.1016/j.automatica.2016.03.004
0005-1098/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2016.03.004
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2016.03.004&domain=pdf
mailto:pjmeyer@kth.se
mailto:Antoine.Girard@l2s.centralesupelec.fr
mailto:Emmanuel.Witrant@ujf-grenoble.fr
http://dx.doi.org/10.1016/j.automatica.2016.03.004


P.-J. Meyer et al. / Automatica 70 (2016) 14–20 15

The paper is organized as follows. In Section 2, we introduce the
class of systems we consider. In Section 3, we establish a certain
number of results on robust invariance and robust controlled
invariance. In Section 4, we show how our characterization of
robust controlled invariant interval allows us to synthesize robust
stabilizing controllers. Finally these methodological results are
applied to the temperature control of a UFAD model and tested on
a small-scale experimental flat in Section 5.

2. Monotone control systems

We consider a class of nonlinear systems given by:

ẋ = f (x, u, w), (1)

where x ∈ Rn, u ∈ Rp and w ∈ Rq denote the state, the control
input and the disturbance input, respectively. The vector field f is
assumed to be locally Lipschitz. The trajectories of (1) are denoted
by Φ(·, x0,u,w) where Φ(t, x0,u,w) is the state reached at time
t ∈ R+

0 from the initial state x0 ∈ Rn, under control and distur-
bance inputs u : R+

0 → Rp and w : R+

0 → Rq. When the control
inputs of system (1) are generated by a state-feedback controller
u : Rn

→ Rp, the dynamics of the closed-loop system is given by
ẋ = fu(x, w) = f (x, u(x), w) and its trajectories are denoted by
Φu(·, x0,w).

2.1. Monotonicity

The subsequent developments of this paper require the system
(1) to satisfy some monotonicity property and we particularly
focus on the subclass of cooperative systems. For a variable z ∈

{x, u, w} with z ∈ Rm, the partial orderings ≽z, ≼z, ≫z and ≪z
represent the classical componentwise inequalities ≥, ≤, > and
< on Rm. These orderings can be extended to functions z, z′

:

R+

0 → Rm where z≽z z′ if and only if z(t) ≽z z′(t) for all t ≥ 0.
Given z and z ∈ Rm with z ≽z z, [z, z] denotes the interval such
that z ∈ [z, z] if and only if z ≽z z ≽z z. FollowingAngeli and Sontag
(2003), we now introduce the notion of cooperative system using
the partial orderings ≽x, ≽u and ≽w .

Definition 1 (Cooperative System). System (1) is cooperative if for
all x≽x x′, u≽u u′, w≽w w′, it holds for all t ≥ 0, Φ(t, x,
u,w) ≽x Φ(t, x′,u′,w′).

In a cooperative system, a variable (state or input) affects a
state always in a positive way, as shown by the following
characterization which is a generalization of the Kamke condition
to systems with inputs.

Proposition 2 (Angeli & Sontag, 2003). System (1) is cooperative
if and only if for all i ∈ {1, . . . , n}, for all x≽x x′ with xi =

x′

i, u≽u u′, w ≽w w′, it holds fi(x, u, w) ≥ fi(x′, u′, w′).

In the following, we shall make the following assumption for
system (1).

Assumption 3. System (1) is cooperative with bounded control
and disturbance inputs: u ∈ [u, u] and w ∈ [w, w].

Assumption 3 is crucial for our robustness analysis since we can
focus on studying the behavior of the system only for the extremal
values of the variables: all other behaviors are necessarily bounded
by the extremal behaviors.

2.2. Additional assumptions

Some of the results presented in the following sections need
additional requirements on system (1). The following assumption
is necessary for all main results presented in this paper.

Assumption 4. System (1) satisfies the local control property:
any component of the control input directly influences a single
component of the state in (1).

With this assumption, system (1) can then be written as ẋi =

fi(x, ui, w) for all i ∈ {1, . . . , n}, where ui represents all input
components with a direct influence on xi (i.e. ui can be a vector,
a scalar or the empty set).

We also extend the definition of a static input-state character-
istic introduced in Angeli and Sontag (2003) to systems with both
control and disturbance inputs. The following assumption is op-
tional as it is only useful for secondary results: the main results
can still be applied if it is not satisfied.

Assumption 5. System (1) has a static input-state characteristic
kx : Rp

× Rq
→ Rn: for each pair (u, w) of constant control and

disturbance inputs, (1) has a unique globally asymptotically stable
equilibrium kx(u, w).

3. Robust invariance for monotone systems

In this section, we present and characterize several notions
of robust invariance and focus on finding the associated inputs
and state intervals. Some of the results of this section were
previously presented in Meyer, Girard, and Witrant (2013) with
less generality.

3.1. Robust invariance

A robust invariant is a set such that if the state of the system
is initialized in this set then it remains in the set forever, for all
values of the control and disturbance inputs. Restricting this notion
to intervals, we have the following definition.

Definition 6 (Robust Invariance). An interval [x, x] is robust
invariant if, for all x0 ∈ [x, x],u ∈ [u, u],w ∈ [w, w], it holds
for all t ≥ 0, Φ(t, x0,u,w) ∈ [x, x].

Thus, if the initial state is in a robust invariant interval, this interval
contains all reachable states from this initial condition. However,
this does not mean that all points in this interval are reachable.
In order to minimize the quantity of non-reachable states in the
interval, one can look for the minimal robust invariant interval
(where minimality refers to the set inclusion), which is useful in
the subsequent study as we can restrict the analysis of system (1)
to that region.

Theorem 7. Under Assumption 3, [x, x] is robust invariant if and
only if f (x, u, w) ≼x 0 and f (x, u, w) ≽x 0. In addition, if As-
sumption 5 holds, then the minimal robust invariant interval is
[kx(u, w), kx(u, w)].
Proof. [x, x] is robust invariant if and only if for any element x of
the boundary of [x, x], the flow Φ(t, x,u,w) does not leave the in-
terval. This is equivalent to having the vector field at x point inside
the interval for all u ∈ [u, u] andw ∈ [w, w]. By considering the el-
ements of the boundary x and x, it is clear that the conditions above
are necessary. Let us show that they are also sufficient under As-
sumption 3. By Proposition 2, we have for all i ∈ {1, . . . , n}, u ∈

[u, u], w ∈ [w, w] and x ∈ [x, x] with xi = xi, fi(x, u, w) ≤

fi(x, u, w) ≤ 0 and for all i ∈ {1, . . . , n}, u ∈ [u, u], w ∈ [w, w]

and x ∈ [x, x] with xi = xi, fi(x, u, w) ≥ fi(x, u, w) ≥ 0. Therefore,
[x, x] is robust invariant. Now, let us assume that Assumption 5
holds. By definition, we have f (kx(u, w), u, w) = 0 and f (kx(u, w),
u, w) = 0. From what precedes, [kx(u, w), kx(u, w)] is robust in-
variant. Also, any robust invariant interval would contain kx(u, w)
and kx(u, w) as these are globally asymptotically stable equilibria
for constant inputs u = u,w = w and u = u and w = w, respec-
tively. Hence, the robust invariant interval [kx(u, w), kx(u, w)] is
minimal with respect to set inclusion. �
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