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a b s t r a c t

This paper presents an extremum seeking control (ESC) scheme for mobile robots with nonholonomic
constraints. Many sensors, such cameras, have a limited field of view. If a target function is based on these
sensors, correct robot orientation is critical for maximizing the target function. Our approach is novel in
that it will maximize a target function that is a function of robot position and orientation, while overcom-
ing the nonholonomic constraints that prevent simplemotion along the gradient of all degrees of freedom.
Stability analysis proves our ESC scheme is well behaved and the robot will settle in the neighborhood of
amaximum of the target function. Simulation and experiment results elucidate performance for different
tasks.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mobile robots can be used for many automatic searching tasks,
such as seeking resources, search and rescue, surveillance, and ex-
ploration. Many of these tasks can be modeled as an optimiza-
tion problem. The search area is the feasible range of the problem,
and the mobile robot acts as an observer, measuring some physi-
cal variable related with the searching task. The measurement at
every point in the feasible range constitutes a measurement-to-
point mapping or a target function. The mobile robot then seeks
the point where themeasurement is at its maximum. For example,
in the source seeking task, amobile robot is equippedwith a sensor
to measure the strength of a scalar signal emitted by a source and
seeks a path to this source (Cochran & Krstic, 2009; Liu & Krstic,
2010b; Matveev, Teimoori, & Savkin, 2011; Zhang, Arnold, Ghods,
Siranosian, & Krstic, 2007).

In many cases there is little or no a priori information of
the target function, nor is there absolute information of the
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robot’s location. In these situations, extremum seeking control
(ESC) algorithms are a strong option (Cochran & Krstic, 2009;
Dürr, Stanković, Ebenbauer, & Johansson, 2013; Fu & Özgüner,
2011; Ghaffari, Krstić, & Nešić, 2012; Haring, Van De Wouw, &
Nešić, 2013; Khong, Nešić, Tan, & Manzie, 2013; Krstić & Wang,
2000; Liu & Krstic, 2010b; Matveev et al., 2011; Moase & Manzie,
2012; NešIć, Nguyen, Tan, & Manzie, 2013; Porat & Nehorai,
1996; Rotea, 2000; Stanković & Stipanović, 2010; Tan, Nesic, &
Mareels, 2006; Zhang et al., 2007).Many of ESC algorithms attempt
to find the maximum value of the target function by adjusting
the control inputs according to a gradient estimation algorithm
implemented in real time. The gradient is estimated by using
an external, periodic perturbation and a series of filtering and
modulation operations. The estimated gradient is integrated to
generate the control inputs, which constitute an estimate of the
optimal set of variables. If the ESC loop is stable, the inputs to
the integrators will vanish when the system reaches steady state.
This results in a zero gradient, which is a necessary condition for
unconstrained optimization. Thus, in steady state, the system is at
a local maximum.

For nonholonomic mobile robots, the ESC problem is partic-
ularly difficult, as nonholonomic constraints prevent the system
from actuating along all degrees of freedom. It is therefore impos-
sible to move along an arbitrary gradient. Unique ESC algorithms
were presented in Cochran and Krstic (2009), Ghods and Krstic
(2010), Liu and Krstic (2010b), Matveev et al. (2011) and Zhang
et al. (2007) to search for the maximum of a scalar measurement
in a 2D plane. In these works, the functions being maximized were
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functions of position, but not orientation. That is, the maximum of
the target function is invariant to robot orientation.

When the target function is dependent on the robot orientation,
the problem becomes more challenging. A constant angular
velocity, as used in Zhang et al. (2007),may no longer be applicable,
as the robot cannot settle at an orientation that will maximize the
signal. On the other hand, if a robot keeps a constant linear velocity
as in Cochran andKrstic (2009), Liu andKrstic (2010b) andMatveev
et al. (2011), the robot must maintain a curved trajectory in which
the orientation sweeps through all values (e.g. circle or rose curve)
to stay in a bounded neighborhood around the maximum point.
Thus the robot cannot settle at any fixed orientation. In the case
that the angular velocity is tuned by ESC and the linear velocity
is regulated by a derivative control law as in Ghods and Krstic
(2010), the robot is able to settle at a fixed orientation, but this
settled orientation is somewhat arbitrary and has no relation with
the target function. The problem becomes more difficult still for
robots with sensors that have limited field of view (FOV), since the
robot has to keep its target in the FOV (Gans & Hutchinson, 2007)
or it will lose themeasurement. Examples of such kind of tasks that
depend on orientation and FOV include mobile robots equipped
with forward facing camera, marine vehicles equipped with active
sonar, or vehicles equipped with active radar or lidar.

In this paper, we propose an ESC scheme for nonholonomic
mobile robots in SE(2), that is, optimal pose seeking including both
the optimal position and optimal orientation. We are motivated
by tasks in which a robot equipped with a camera seeks to
maximize the value of the image information in the current view
(Yinghua Zhang & Gans, 2011; Yinghua Zhang, Shen, & Gans, 2011;
Zhang & Gans, 2013). A related problem would be searching for a
target via template matching, in which a mobile robot equipped
with a camera continuously computes the correlation function
between the current image and a preloaded image and moves to
a position where the correlation function achieves its maximum.
Anothermotivating problem is amobile robot seeking tomaximize
communication signal strength by properly aiming its antenna.

In the following sections, we first introduce the model of
nonholonomicmobile robot, and the definition of averaged system.
Then, the proposed SE(2) ESC algorithm is presented in detail, and
its stability is proved under the assumption of quadratic target
function. In the end, simulations and experiments are shown to
demonstrate its performance.

2. Background

2.1. Nonholonomic mobile robots

We adopt the kinematic unicycle model for our nonholonomic
mobile robot. The coordinates of the robot state are [x, y, θ ]

T ,
where x and y are the position coordinates of the robot in a 2Dplane
and θ is the orientation angle. The equations of state can bewritten
in matrix form asẋ

ẏ
θ̇

 =

cos(θ)
sin(θ)

0


v +

0
0
1


w (1)

where v and w are linear and angular velocity, respectively, and
are inputs to the system.

2.2. Averaged system

If a system is given by ẋ = εf(x, t, ε), where x ∈ Rn, ε is a small
positive parameter, and f(x, t, ε) is T -periodic in t , the averaged
system is

ẋa = εf̄(xa)

Fig. 1. Our proposed ESC scheme for mobile robots.

where f̄(xa) =
1
T

 T
0 f(xa, t, 0)dt . See Khalil (2002) for details of

averaging theory and methods.

3. Systemmodel

The proposed ESC scheme for nonholonomic mobile robot is
shown in Fig. 1. The target function we are going to explore is rep-
resented by the block f, and the function value J = f (x, y, θ). A
group of linear filters are used in this scheme: the low pass filters
LP2, LP3 and high pass filters HP1, HP2. We implemented them as
1st order filters. The transfer functions of LP2 and LP3 are respec-
tively ω2

s+ω2
and s(1−k3)+ω1

s+ω1
, and the transfer function ofHP1 andHP2

are respectively s
s+ω1

and s
s+ω2

, where theω1 andω2 are cutoff fre-
quencies for the filters, and the constant k3 ≠ 1. The signals ηJ , ξJ2
and ξJ1 are outputs of LP3, HP2 and HP1 respectively. The inputs
a cos(ωt) and b cos(2ωt) serve as dithers for v and w respectively,
and cos(ωt+φ) and sin(2ωt) serve as demodulating signals,where
the phase φ is constant. The signals g1 and g2 are the signals of es-
timated gradients of the target function with respect to position
and orientation. They are multiplied by constants k1 and k2 before
being applied as input to the robot in (1).

In contrast with typical multi-dimensional ESC, an additional
low-pass filter LP3 is necessary in the linear velocity feedback loop.
The linear and angular velocity inputs have different dither fre-
quencies. LP3 discriminates the components fromeach input in the
output signal to facilitate the demodulation and estimation pro-
cess. Considering the system bandwidth, the frequency difference
cannot be too large. Thus, we suggest 2ω for the angular dither fre-
quency.

To facilitate the proof of system stability, we transform the
system block diagram to an equivalent form shown in Fig. 2, in
which the target function f , dither signals, and constant gains are
same as Fig. 1. The first difference is that we transform LP3 in Fig. 1
to the form of an input minus a high pass filter. Define ξ as the
outputs of HP3

ξ̇ = −ω1ξ + k3 J̇. (2)

The second difference is thatwe transform the two high pass filters
in Fig. 1 to the form of input minus a low pass filter. Define η1, η2
as the outputs of LP1 and the LP2 in the lower branch respectively

η̇1 = −ω1η1 + ω1J
η̇2 = −ω2η2 + ω2(J − ξ). (3)

As illustrated in Fig. 2, the robot position dynamics are

ẋ = cos(θ)[a cos(ωt) + k1(J − ξ − η2) cos(ωt + φ)]

ẏ = sin(θ)[a cos(ωt) + k1(J − ξ − η2) cos(ωt + φ)] (4)
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