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a b s t r a c t

We consider state-feedback predictor-based control of networked control systems with large time-
varying communication delays. We show that even a small controller-to-actuators delay uncertainty
may lead to a non-small residual error in a networked control system and reveal how to analyze such
systems. Then we design an event-triggered predictor-based controller with sampledmeasurements and
demonstrate that, depending on the delay uncertainty, one should choose various predictor models to
reduce the error due to triggering. For the systems with a network only from a controller to actuators,
we take advantage of the continuously available measurements by using a continuous-time predictor
and employing a recently proposed switching approach to event-triggered control. By an example of an
inverted pendulum on a cart we demonstrate that the proposed approach is extremely efficient when the
uncertain time-varying network-induced delays are too large for the system to be stabilizable without a
predictor.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In networked control systems (NCSs), which are comprised
of sensors, controllers, and actuators connected through a
communication medium, transmitted signals are sampled in time
and are subject to time-delays. Most existing papers on NCSs study
robust stability with respect to small communication delays (see,
e.g., Antsaklis & Baillieul, 2004; Fridman, Seuret, & Richard, 2004;
Gao, Chen, & Lam, 2008; Liu & Fridman, 2012). To compensate
large transport delays, predictor-based approach can be employed.
So far this was done only for sampled-data control with known
constant delays (Karafyllis & Krstic, 2012; Mazenc & Normand-
Cyrot, 2013). In this paper we develop predictor-based sampled-
data control for unknown time-varying delays.

There are several works that study robustness (w.r.t. de-
lay uncertainty) of a predictor-based continuous-time controller
(Bekiaris-Liberis & Krstic, 2013; Karafyllis & Krstic, 2013; Li, Zhou,
& Lin, 2014; Yue & Han, 2005). In these works the residual error
that appears due to delay uncertainty can be made arbitrary small
by reducing the upper bound of the uncertainty. However, this is
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not true for sampled-data systems, where an arbitrary small delay
uncertainty may lead to a non-vanishing error (because the terms
that appear in the residual error may belong to different sampling
intervals).

In this work we study an NCS with two networks: from sensors
to a controller and from the controller to actuators. Both networks
introduce large time-varying delays.We assume that themessages
sent from the sensors are time stamped (Zhang, Branicky, &
Phillips, 2001). This allows to calculate the sensors-to-controller
delay. The controller-to-actuators delay is assumed to be unknown
but belongs to a known delay interval. We use a state-feedback
predictor, which is calculated on the controller side, to partially
compensate both delays. By extending the time-delay modeling of
NCSs (Fridman, 2014; Fridman et al., 2004; Gao et al., 2008), we
present the system in a form suitable for analysis. Using a proper
Lyapunov–Krasovskii functional, we derive LMI-based conditions
for the stability analysis and design that guarantee the desired
decay rate of convergence.

As the next step we introduce an event-triggering mecha-
nism (Heemels, Johansson, & Tabuada, 2012; Tabuada, 2007) into
predictor-based networked control. The event-triggering condi-
tion is checked on a controller side and allows to reduce the
amount of control signals sent through a controller-to-actuators
network. We demonstrate that it is reasonable to choose dif-
ferent predictor models for a zero and non-zero controller-to-
actuators delay uncertainty. Finally, we consider predictor-based
event-triggered control with continuous-time measurements and
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Fig. 1. NCS with a predictor.

sampled control signals sent through a controller-to-actuators net-
work. Such systems naturally appear when a visually observed ve-
hicle is controlled through a wireless network. To take advantage
of the continuously available measurements, we use a continuous-
time predictor (Artstein, 1982; Kwon & Pearson, 1980; Mazenc
& Normand-Cyrot, 2013) and a recently proposed switching ap-
proach to event-triggered control (Selivanov & Fridman, in press).

By an example of an inverted pendulum on a cart we
demonstrate that the proposed approach is extremely efficient
when the uncertain time-varying network-induced delays are
too large for the system to be stabilizable without a predictor.
Moreover, the considered event-triggering mechanism allows to
significantly reduce the network workload.

2. Networked control employing predictor

Consider the linear system

ẋ(t) = Ax(t) + Bu(t), t ≥ 0 (1)

with the state x ∈ Rn, control input u ∈ Rm, and constant matrices
A, B of appropriate dimensions for which there exists K ∈ Rm×n

such that A+ BK is a Hurwitz matrix. Let {sk} be sampling instants
such that

0 = s0 < s1 < s2 < · · · , lim
k→∞

sk = ∞, sk+1 − sk ≤ h.

At each sampling time sk the state x(sk) is transmitted to a
controller, where a control signal is calculated and transmitted
to actuators (see Fig. 1). We assume that the controller and the
actuators are event-driven (update their outputs as soon as they
receive new data). Both state and control signals are subject to
network-induced delays r0 + ηk and r1 + µk, respectively. Thus,
the controller updating times are ξk = sk + r0 + ηk and the
actuators updating times are tk = ξk + r1 + µk, where k ∈ Z+,
Z+ = {0, 1, 2, . . .} (see Fig. 2). Here r0 and r1 are known constant
transport delays, ηk and µk are time-varying delays such that

0 ≤ ηk ≤ ηM , 0 ≤ µk ≤ µM , ξk ≤ ξk+1, tk ≤ tk+1. (2)

We assume that the sensors and controller clocks are synchronized
and together with x(sk) the time stamp sk is transmitted so that the
value of ηk = ξk− sk− r0 can be calculated on the controller side at
time ξk. Delay uncertaintyµk is assumed to be unknown. Note that
we do not require ηk +µk to be less than the sampling interval but
the sequences {ξk} and {tk} of updating times should be increasing.

Define u(ξ) = 0 for ξ < ξ0. Then (1) transforms to

ẋ(t) = Ax(t), t ∈ [0, t0),
ẋ(t) = Ax(t) + Bu(ξk), t ∈ [tk, tk+1), k ∈ Z+.

(3)

To construct a predictor-based controller for (3), define

v(ξ) ,


0, ξ < ξ0,
u(ξk), ξ ∈ [ξk, ξk+1), k ∈ Z+

(4)

and consider the change of variable (Artstein, 1982; Kwon &
Pearson, 1980)

z(t) , eA(r0+r1)x(t) +

 t+r0

t−r1
eA(t+r0−θ)Bv(θ) dθ, (5)

Fig. 2. Time-delays and updating times.

where t ≥ 0. We set z(t) = 0 for t < 0. If µM = 0,
i.e. controller-to-actuators delay is constant, (4), (5) is the state
prediction, namely, z(t) = x(t + r0 + r1). If µk ≢ 0 to obtain
the precise state prediction one needs to integrate (3), where tk =

ξk + r1 + µk depends on µk. Since µk is unknown, we use the
prediction (4), (5) that is imprecise for µk ≢ 0. By substituting (3)
for ẋ(t) we obtain

ż(t) = Az(t) + Bv(t + r0) − eA(r0+r1)Bv(t − r1), t ∈ [0, t0),

ż(t) = Az(t) + Bv(t + r0) + eA(r0+r1)B [u(ξk) − v(t − r1)] , (6)
t ∈ [tk, tk+1), k ∈ Z+.

Consider the following control law

u(ξk) , Kz(sk) = K

eA(r0+r1)x(sk)

+

 ξk−ηk

ξk−ηk−r0−r1
eA(ξk−ηk−θ)Bv(θ) dθ


, k ∈ Z+. (7)

Since ηk is available to the controller at time ξk, the control signal
(7) can be calculated. Moreover, no numerical difficulties arise
while calculating the integral term in (7) with a piecewise constant
v(θ) given by (4).

We analyze (4)–(7) using the time-delay approach to NCSs
(Fridman, 2014; Fridman et al., 2004; Gao et al., 2008). According
to (4), (7), v(t + r0) = Kz(sk) whenever t + r0 ∈ [ξk, ξk+1), that is,
when t ∈ [ξk − r0, ξk+1 − r0). If t < ξ0 − r0 then v(t + r0) = 0 =

Kz(t − η0). Therefore,

v(t + r0) = Kz(t − τ(t)), t ∈ R, (8)

where

τ(t) =


η0, t < ξ0 − r0,
t − sk, t ∈ [ξk − r0, ξk+1 − r0), k ∈ Z+.

Note that for t ≥ ξ0 − r0

0 ≤ τ(t) ≤ max
k

{(sk+1 + r0 + ηk+1) − r0 − sk} ≤ h + ηM .

By similar reasoning we obtain

ż(t) = Az(t) + BKz(t − τ(t))

+ eA(r0+r1)BK [z(t − τ2(t)) − z(t − τ1(t))], t ≥ 0, (9)

with

z(0) = eA(r0+r1)x(0), z(t) = 0 for t < 0, (10)

τ(t) ,


η0, t < ξ0 − r0,
t − sk, t ∈ [ξk − r0, ξk+1 − r0), k ∈ Z+,

τ1(t) ,


r1 + r0 + η0, t ∈ [0, t0 − µ0),
t − sk, t ∈ [tk − µk, tk+1 − µk+1), k ∈ Z+,

τ2(t) ,


r0 + r1 + η0 + µ0, t ∈ [0, t0),
t − sk, t ∈ [tk, tk+1), k ∈ Z+,

(11)

0 ≤ τ(t) ≤ τ̄ , h + ηM ,

r0 + r1 ≤ τ1(t) ≤ τ2(t) ≤ τM , r0 + r1 + h + ηM + µM .
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